有线方式主要有:有线以太网(RJ45线、光纤)、工业串行总线(RS485、RS232、CAN总线)。 有线以太网主要优点是数据传输可靠、网络容量大,缺点是布线复杂、扩展性差、施工成本高、灵活性差。 工业串行总线(RS485、RS232、CAN总线)优点是数据传输可靠,设计简单,缺点是布网复杂、扩展性差、施工成本高、灵活性差、通信容量低。
变电所及配电设备的布置设计应便于安装、操作、搬运、检修、试验和监测。高低压配电室、变压器室、电容器室、控制室内,不应有与其无关的管道和线路通过。当然,即便充电站技术瓶颈得到了很好的解决,但是充电站建设可能还存在选址困难等问题。新能源汽车应先以城市为主,但繁华Ⅸ域往往用地紧张,地价成本较高,这方面需要在政策上能予以倾斜.推动充电设施的建设。由电力企业发展经营电动车充电站具有先天优势。
电气要求 ① 插头与插座正确连接确认成功后,带负载可分合电路方可闭合,实现对插座的供电; ② 漏电保护装置应安装在供电电缆进线侧; ③ 低压配电设备及线路的保护应满足《低压配电设计规范》(GB/50053)中的相关规定; ④ 对IT系统配电线路,当次接地故障时,应由绝缘监察装置发出音响或灯光信号,当发生第二次异相接地故障时应由过电流保护电器或漏电电流动作保护器切断故障电路; ⑤ 照明配电系统中,照明和插座回路不宜由同一回路供电。插座回路的电源侧应设置剩余 电流动作保护装置,其额定动作电流为30mA;
作为电网配用电侧的电动汽车充电桩(栓),其结构的特殊性决定了自动化通信系统的特点是被测点多且分散、覆盖面广、通信距离短。并且随着城市的发展,网络拓扑要求具有灵活性和扩展性的结构,因此,电动汽车充电桩(栓)通信方式的选择应考虑如下问题: (1) 通信的可靠性——通信系统要长期经受恶劣环境和较强的电磁干扰或噪音干扰的考验,并保持通信的畅通。 (2) 建设费用——在满足可靠性的前提下,综合考虑建设费用及长期使用和维护的费用。 (3) 双向通信——不仅能实现信息量的上传,还要实现控制量的下达。 (4) 多业务的数据传输速率——随着以后终端业务量的不断增长,主站到子站、子站到终端之间通信对实现多业务的数据传输速率要求越来越高。 (5) 通信的灵活性和可扩展性——由于充电桩(栓)具有控制点面多、面广和分散的特点,要求采用标准的通信协议,随着“ALL IP”网络技术趋势的发展以及电力运营业务的不断增长,需要考虑基于IP的业务承载,同时要求便于安装施工、调试、运行、维护。
地面充电站中充电器的方案,该充电器由一个能将输人的交流电转换为直流电的整流器和一个能调节直流电功率的地面充电站中充电器的方案功率转换器组成,通过把带电线的插头插入电动汽车上配套的插座中,直流电能就输入蓄电池对其充电。充电器设置了一个锁止杠杆以利于插入和取出插头,同时杠杆还能提供一个确定已经锁紧的信号以确保安全。根据充电器和车上电池管理系统相互之间的通讯,功率转换器能在线调节直流充电功率,而且充电器能显示充电电压、充电电流、充电量和充电费用。这只是充电桩的基本原理,许多细节问题都应在实际应用中不断改进,已得到便捷的使用方案。
充电桩中游为运营商,运营大型充电站或提供充电桩服务等。为了更好地服务电动汽车,不少运营商承建了大型的充电站,为电动汽车提供充电服务。除此以外,在小区、购物中心、商厦、学校、等地方也设立充电桩以满足电动汽车的需求。
恒流充电法是用调整充电装置输出电压或改变与蓄电池串联电阻的方法,保持充电电流强度不变的充电方法。控制方法简单,但由于电池的可接受电流能力是随着充电过程的进行而逐渐下降的,到充电后期,充电电流多用于电解水,产生气体,使出气过甚,因此,常选用阶段充电法。
充电电源的电压在全部充电时间里保持恒定的数值,随着蓄电池端电压的逐渐升高,电流逐渐减少。与恒流充电法相比,其充电过程更接近于佳充电曲线。用恒定电压快速充电。由于充电初期蓄电池电动势较低,充电电流很大,随着充电的进行,电流将逐渐减少,因此,只需简易控制系统。
充电桩的主要组成部分包括:
电源模块:将电网的交流电转化为适合电动汽车电池的直流电。
控制模块:管理充电过程,监控电流、电压和温度等参数,确保充电的安全性和性。
通信模块:用于与电动汽车、电网和后台管理系统通信,支持身份验证、支付和数据传输等功能。
接口和连接线:为电动汽车提供充电接口,一般采用标准化设计,兼容性和安全性。