镁合金因其的性能被广泛应用在航天、通信等领域中。近年来,由于镁合金具有的生物安全性、可降解性以及生物力学相容性等特点,在生物医用合金应用上被广泛地关注与研究。但由于镁合金为密排六方结构导致其在室温下的塑性较差,限制了生物医用镁合金的加工成形与应用。
针对生物医用镁合金管材加工制备,主要是通过直接挤压成形或者通过挤压成形后进行多道次的拉拔成形。挤压镁合金可以获得细化均匀的晶粒,具有更高的强度和更好的延展性,能满足多样化结构部件的需求。但是由于镁合金的塑性较差,因此如何改善挤压镁合金的显微组织、提高合金的力学性能成为关键。不同的挤压工艺参数会导致镁合金挤压管材的显微组织和力学性能存在差异,但如何在不改变挤压工艺参数下,通过改善合金初始组织从而提高合金的力学性能的研究报道较少。
Mg-4Zn-0.3Zr合金锭由高纯Mg(99.95%,质量分数,下同)、高纯Zn(99.90%)和Mg-30Zr中间合金制备。合金熔炼在全程通有N2(98%,体积分数)和SF6(2%,体积分数)保护气体的电阻炉中进行。在720 ℃下熔化高纯Mg 后,升温至780 ℃ 加入Mg-30Zr中间合金,待中间合金熔化后降温至720 ℃加入高纯Zn,保温30 min后捞渣,准备浇注。将金属液倒入放在电磁搅拌器中圆柱形陶瓷模具中,在磁力搅拌器的作用下完全凝固,电磁搅拌的电流和频率分别为150A 和6 Hz。
镁(Mg)和镁合金已成为结构部件的竞争性替代品,因为运输中对高强度重量比材料的需求不断增长。尽管如此,制造镁部件的一个重要限制是织构镁合金的大拉伸-压缩屈服不对称性,这导致变形过程中的早期断裂。这种行为基本上可以归因于在拉伸和压缩过程中激活的不同变形机制,这是由于热机械加工产生的强烈纹理以及{10`1 2}延伸孪生的极性。
镁合金凭借其的优势,被更多的自行车厂商发现,被用在自行车的重要承重结构——车架上。因为车架是所有整体重量集中的部件,选择轻质且综合力学性能较好的镁合金是再合适不过了,特别适用于休闲类自行车及折叠自行车上,其炫酷多变、概念化的外形也能成为时下趋势电动自行车的绝妙搭配。
挤压态Mg-2Nd合金表现出高达30% 的拉伸延伸率与缓慢均匀的降解速率,但是材料的断裂强度只有193 MPa,比较高的塑性变形性能使Mg-2Nd合金在心血管支架、食道粘膜支架等方面具有良好的应用前景。Mg-Nd变形镁合金普遍表现出较高的塑性,这是因为Nd固溶于镁合金中,可以大幅降低镁合金的晶间层错能,使非基面滑移变得容易起来。
Zn元素是人体中的微量元素之一,在人体生长发育、生殖遗传、、内分泌等重要生理过程中起着极其重要的作用。同时,它还是镁合金中常用的合金元素之一,具有显著的固溶强化效果,并且还可以提高镁合金的腐蚀电位, 提高其耐蚀性。为此本文中通过在Mg-Nd合金中添加适量Zn元素来弥补Mg-Nd合金强度较低的不足,期望新的MgNd-Zn合金在保持良好的塑性变形能力的同时,还具备较高的强度,满足镁合金用于制作缝合线、吻合钉等植入物产品的性能要求。本文研究了Zn含量变化对铸态及挤压态Mg-2Nd-x Zn(x=0.2, 1.0, 2.0)合金和Mg-0.5Nd-x Zn(x=2.0, 4.0,6.0)合金的微观结构、力学性能以及腐蚀性能的影响。