识别速度决定了一个车牌识别系统是否能够满足实时实际应用的要求。一个识别率很高的系统,如果需要几秒钟,甚至几分钟才能识别出结果,那么这个系统就会因为满足不了实际应用中的实时要求而毫无实用意义。例如,在高速公路收费中车牌识别应用的作用之一是减少通行时间,速度是这一类应用里减少通行时间、避免车道堵车的有力保障。
几乎每家都宣称拥有高辨识率,但为了避免事后因为双方对产品认知有差异,而将运作不良的责任互相推托,用户在采购车牌辨识系统时,不妨要求实地测试,而且测试时间好超过两个礼拜,比较能判断辨识结果是否“言过其实”。因为多变的环境,两个礼拜应该可以对于场域可能影响辨识率的情形,大约掌握了八成,如果只是测一天、甚至几个小时,是无法了解的。
图形检索,定位车牌图片处理到这一步,来了——车牌检索。动脑筋的朋友可能已经意识到了,车牌是规则的长方形,我们只要找二值化后图片里的长方形就好了。问题来了,你找长方形,问题是有些车辆的撒热窗就是长方形。爱动脑筋的小伙伴已经注意到了,车牌的长宽比与车身其他位置的形状长宽比不同。掌握了上面的基本常识,那么我们距离找到车牌就更近了。计算机扫描整个二值化的图片,由左到右,由上到下,把颜色从黑到白或者由白到黑的像素全部记录下来。然后根据这些像素来计算哪个区域是长方形,并且符合车牌的比例。