主流的人脸检测方法基于以上特征采用Adaboost学习算法,Adaboost算法是一种用来分类的方法,它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。人脸检测过程中使用Adaboost算法挑选出一些能代表人脸的矩形特征(弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器,再将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,有效地提高分类器的检测速度。
一般来说,人脸识别系统包括图像摄取、人脸定位、图像预处理、以及人脸识别(身份确认或者身份查找)。系统输入一般是一张或者一系列含有未确定身份的人脸图像,以及人脸数据库中的若干已知身份的人脸图象或者相应的编码,而其输出则是一系列相似度得分,表明待识别的人脸的身份。
人脸识别被认为是生物特征识别领域甚至人工智能领域困难的研究课题之一。人脸识别的困难主要是人脸作为生物特征的特点所带来的。不同个体之间的区别不大,所有的人脸的结构都相似,甚至人脸器官的结构外形都很相似。这样的特点对于利用人脸进行定位是有利的,但是对于利用人脸区分人类个体是不利的。
人脸自动对焦和笑脸快门技术:是面部捕捉。它根据人的头部的部位进行判定,确定头部,然后判断眼睛和嘴巴等头部特征,通过特征库的比对,确认是人面部,完成面部捕捉。然后以人脸为焦点进行自动对焦,可以大大的提升拍出照片的清晰度。 笑脸快门技术就是在人脸识别的基础上,完成了面部捕捉,然后开始判断嘴的上弯程度和眼的下弯程度,来判断是不是笑了。以上所有的捕捉和比较都是在对比特征库的情况下完成的,所以特征库是基础,里面有各种典型的面部和笑脸特征数据。
当前主流的人脸识别算法,在进行人脸识别核心的人脸比对时,主要依靠人脸特征值的比对。所谓特征值,即面部特征所组成的信息集。我们辨别一个人的特征,可能会记住他是双眼皮、黑眼睛、蓝色头发、塌鼻梁……但人工智能算法可以辨别和记住的面部特征会比肉眼所能观察到的多很多。
2D人脸识别的优势是实现的算法相对比较多,有一套比较成熟的流程,图像数据获取比较简单,只需一个普通摄像头即可,所以基于2D图像数据的人脸识别是目前的主流,在安防、监控、门禁、考勤、金融身份辅助认证、娱乐等多种场景中都有应用。
所属分类:门禁识别设备/面部识别门禁控制设备
本文链接:http://www.huangye88.com/sell/info-431ri3udod35ab.html
东营供应三辊闸供应商
面议
产品名:三辊闸
枣庄摆闸联系方式
面议
产品名:摆闸
德州供应人脸识别系统电话
面议
产品名:人脸识别系统
青岛出售电动伸缩门
面议
产品名:电动伸缩门
临沂销售挡车器
面议
产品名:挡车器
烟台定制电动门联系方式
面议
产品名:电动门
烟台生产门禁系统价格
面议
产品名:门禁系统
四方区翼闸电话
面议
产品名:翼闸