随着激光加工等工业应用的发展,单台光纤激光器输出的功率已不能满足日益增长的迫切需求。使用高功率光纤合束器能够把多束高功率光纤激光几何拼接为一束,从而提高输出总功率。目前,公知的高功率光纤激光合束器一般为熔融拉锥型。该类合束器将与光纤激光器输出尾纤匹配的光纤紧密拼接后,通过熔融拉锥的方式拉成一根较粗的光纤,并将输入的多路光纤激光导入粗光纤中传输。该类光纤合束器的缺点是工艺复杂、需要配备较复杂的冷却装置和模式剥离器件、存在耦合损耗、成品率低、成本高昂、输出光束质量较差等固有缺陷,目前熔融拉锥型高功率光纤合束器仅在少数实验室应用,尚无大规模商业化产品。
多模光纤合束器将多根光纤组成的光纤束逐渐收缩为单根与双包层光纤尺寸相匹配的多模光纤,再与双包层光纤连接。这种技术适用于多个带尾纤的大功率二管同时泵浦。而且可以将光纤束中心的一根多模光纤替换为适于信号光传输的单模光纤与双包层光纤纤芯熔接,这样泵光可以从多模光纤耦合到掺杂光纤内包层中,而信号光可以从中心的单模光纤耦合到纤芯中,从而可以实现环形腔的结构设计,使得耦合系统结构灵活,因此多模光纤合束器是一种非常有用的耦合器件。光纤合束器的好处都有高功率,低损耗,高稳定。
光纤激光器具有光束质量好、结构紧凑、体积小、质量轻、易散热、工作稳定性好等众多优点,已经成为的研究热点。现在大功率光纤激光器、光纤放大器采用的双包层掺杂光纤,相对于从半导体泵浦激光器发出的多模泵浦光束的大发散角,其内包层的直径很小,因此把泵浦光有效耦合到掺杂双包层光纤的内包层是一个难题。人们发明了很多泵浦耦合技术,大体上可分为端面泵浦和侧面泵浦。端面泵浦技术是从双包层光纤的一个或者两个端面将泵浦光耦合到内包层,主要采用直接熔接耦合、透镜组耦合和锥导管耦合等方式。侧面泵浦耦合技术是从双包层光纤的侧面将泵浦光耦合到内包层,主要有分布包层泵浦耦合、微棱镜侧面耦合、V型槽侧面耦合、嵌入透镜式侧面泵浦耦合、角度磨抛侧面泵浦耦合、光栅侧面泵浦耦合等。
光纤合束器是在熔融拉锥光纤束的基础上制备的光纤器件,它是将一束光纤剥去涂覆层,然后以一定方式排列在一起,在高温中加热使之熔化,同时向相反方向拉伸光纤束,光纤加热区域熔融成为熔锥光纤束。铭创光电可以提供Nx1、(N+1)X1系列不同光纤、不同功率的光纤泵浦合束器,泵浦输出功率可达千瓦级。
根据构成方式分类,光纤合束器又可以分成两类:不包含信号光纤的 N×1 光纤合束器和包含信号光纤的 (N+1)×1 光纤合束器。和 N×1 光纤合束器不同,(N+1)×1 光纤合束器中心的一根光纤是信号光纤。在制作过程中,N 根光纤紧密对称地排列信号光纤周围,中间的信号光纤用于信号光的输入。N×1合束器既有功率合束器,又有泵浦合束器,其功能的不同取决于N路输入光纤的型号,若N路光纤均为单模光纤或大模场光纤,则可以直接与N个激光器相连,用于提高激光的输出功率,即为功率合束器;若N路光纤均为多模光纤,则与N个泵浦源相连,用于提高激光器的泵浦功率,即为泵浦合束器。
侧面泵浦合束器中心为信号光纤,纤芯为单模或准单模波导用于传输激光,六根光纤为泵浦光纤,用于传输泵浦光。七根光纤整齐排列后熔融拉细并与输出双包层光纤熔接。
飞秒激光器
面议
产品名:飞秒激光器,激光器
10通道光延迟线+衰减器模块
面议
产品名:光延迟线,衰减器模块,延迟线,光衰减器
手动切换光开关
面议
产品名:手动切换光开关,切换光开关,光开关,手动光开关
硅基单片集成9bit可调光延迟线芯片
面议
产品名:9bit 可调光延迟线,光延迟线芯片,光延迟线,硅基可调光延迟线芯片
抗弯曲MiniMEMS光衰减器
面议
产品名:Mini MEMS光衰减器,光衰减器,衰减器,抗弯曲衰减器
1064nm台式可调光衰减器特性
面议
产品名:1064nm光衰减器,可调光衰减器,光衰减器,衰减器
1046nm保偏手持式光衰减器
面议
产品名:保偏手持式光衰减器,手持式光衰减器,光衰减器,1046nm光衰减器
硅基单片集成9bit可调光延迟线芯片
面议
产品名:可调光延迟线芯片,光延迟线芯片,光延迟线,硅基光延迟线