电解液的低温性能与电解液自身电导率的大小关系密切,电导率大电解液的传输离子快,低温下可以发挥出更多的容量。电解液中的锂盐解离的越多,迁移数目就越多,电导率就越高。电导率高,离子传导速率越快,所受极化就越小,在低温下电池的性能表现越好。因此较高的电导率是实现锂离子蓄电池良好低温性能的必要条件。
电解液的电导率与电解液的组成成分有关,减小溶剂的粘度是提高电解液电导率的途径之一。溶剂低温下溶剂良好的流动性是离子运输的保障,而低温下电解液在负极所形成的固体电解质膜也是影响锂离子传导的关键,且RSEI为锂离子电池在低温环境下的主要阻抗。
然而,Mn价态多变和Mn3+的Jahn-Teller效应,导致该组分存在着结构不稳定和可逆性差等问题。
彭正顺等指出,不同制备方法对LiMn2O4正极材料的电化学性能影响较大,以Rct为例:高温固相法合成的LiMn2O4的Rct明显溶胶凝胶法合成的,且这一现象在锂离子扩散系数上也有所体现。究其原因,主要是由于不同合成方法对产物结晶度和形貌影响较大。
谷亦杰等在研究低温下LiFePO4的充放电行为时发现,其库伦效率从55℃的分别下降到0℃时的96%和–20℃时的64%;放电电压从55℃时的3.11V递减到–20℃时的2.62V。
Xing等利用纳米碳对LiFePO4进行改性,发现,添加纳米碳导电剂后,LiFePO4的电化学性能对温度的敏感性降低,低温性能得到改善;改性后LiFePO4的放电电压从25℃时的3.40V下降到–25℃时的3.09V,降低幅度仅为9.12%;且其在–25℃时电池效率为57.3%,不含纳米碳导电剂的53.4%。