WE54(Mg-5.4Y-2.3Nd-1.6Gd-0.5Zr)镁合金试样在铸态、T4和T6状态下,呈现出不同的显微组织形貌特征和微区化学成分,而且力学性能也随着处理工艺的不同而发生变化。采用金相显微镜、大功率X射线衍射仪、高分辨场发射扫描电镜及能谱仪分析研究了WE54合金的微观组织形貌、析出相以及微区化学成分的变化。结果表明,WE54合金在铸造状态下,Mg12Nd和Mg24Y5两种新相沿着晶界析出,呈现出网状结构,稀土Gd完全固溶在基体之中,在晶内和晶界析出物的微区化学成分分析中没有发现Gd;经过固溶处理后,铸态时沿晶界分布的大块析出物几乎全部固溶于基体Mg之中,力学性能有所提高;经过人工时效后,晶内析出大量细小的新相。经过对比试样沿横向和纵向析出相的特点,确定该析出相为片状结构。析出相沿3个方向排列分布,而且3个方向之间夹角互成120°,呈现出严格的位向关系,合金的强度进一步得到提高,但伸长率有所降低。
镁合金WE54的主要优点是具有较高的比强度和比刚度,其强度一般为198~294MPa,弹性模量为44100MPa,均较其他合金为低,但由于其比重只有1.7g/cm3,故其比强度仍然与结构钢相近。同时,镁合金具有较好的减振能力和良好的切削加工性。因镁合金的抗蚀性差,使用时要采用氧化处理和涂漆保护等防护措施。镁合金在航空工业中主要用于制作各种框架、壁板、轮毂、机匣等零件。
试验所用镁合金铸锭通过金属型铸造制备。表1所示为铸造合金的化学成分,其中WE54合金在熔炼过程中利用Mg-Zr中间合金对其进行变质处理,而WE54-0Zr合金在熔炼过程中未进行任何变质处理。热分析试验所用的试样为Φ30 mm×60 mm的圆柱形,在铸锭上用电火花线切割获得,试样表面用金相砂纸打磨至表面光亮
在航空航天工业早已认识到镁合金在机身结构和飞机蒙皮、内部设备、航空发动机框架和部件、直升机变速器和飞机轮上减轻重量的好处。对于商用和飞机中的这些零部件,其选材相当严格,需要轻质、耐高温的镁合金,而WE43 WE54 WE94等镁合金则可以完全胜任。
镁的重量只有铝的三分之二,使其成为一个有吸引力的替代品,尤其是现在,更高的燃料成本和日益严格的环境要求,推动航空航天计划,以达到减轻重量和二氧化碳排放量。此外,的轻质镁合金比由碳石墨复合材料制成的成本要低,适合大批量生产及应用。
WE43 WE54 WE94镁合金为飞机部件设计人员提供高温特性、耐压性和通过铸造、机加工、挤压或锻造生产复杂形状的能力。这些合金使发动机和动力传动系统能够在较高温度下安全运行,减轻飞机自重。
镁合金WE54具有良好的导热和导电性能,虽然镁合金的导热能力不及铝合金,但远塑料、树脂,同时镁合金具有良好的电磁屏蔽性能,非常适合用于制造电子产品的金属外壳、机罩。一些电子通讯品牌企业已经成功将镁合金用于制造个人便携式电脑、手机、摄录影器材等电子产品外壳。在2003年全球出货的3000万台笔记本电脑中,采用铝和塑胶机壳的比重达75%,使用镁合金的比重仅25%,但2004年笔记本电脑采用镁合金机壳的比重就提高到了50%以上。
虽然镁合金WE54拥有众多吸引人的性能优势,但由于其自身固有的一些性能缺点,以及当前的技术制约,使其仍然难以进行广泛的推广利用。材料界的——师昌绪院士就曾指出镁合金的发展存在三大瓶颈, 即缺乏有效析出相、易腐蚀和难变形。这三大问题也是发展新型镁合金面临的主要障碍。
镁的电极电位低,化学性质活泼,导致镁合金产品容易腐蚀。因此,腐蚀问题也是阻碍镁合金应用的一个关键因素。改善镁合金的耐蚀性能,目前主要有两种技术方式,一种是通过合金化和纯净化处理来提高镁合金基体本身的电极电位,或者形成表面自愈合防护膜,增强自身对环境腐蚀的抵抗能力;另一种是通过表面防护处理,形成表面保护膜而防止基体的腐蚀。由于前者受到镁自身化学特性的限制,未取得应用上的突破性进展,故目前国内外多致力于表面防护技术的研究开发,在目前广泛使用的微弧氧化表面处理技术基础开拓了一些新的表面处理技术,并取得了较好的成果。
大力发展镁合金WE54的应用,以加快镁合金的基础研究为前提。加强对镁合金强韧化机理及塑性变形机制的基础理论研究,从根本上认识镁合金的强化及塑性变形机理,同时加强对镁合金腐蚀机理和失效机制的研究。在此基础上创造有利于镁合金变形的应力应变条件,开发新型镁合金体系,通过变形镁合金加工工艺,生产制备出具有高强、耐热耐蚀,以及良好变形性能的镁合金。