由于采用了硬齿面齿轮和设计制造技术的不断提高,传递同样的功率和减速比,减速器的尺寸不断减小,所以散热问题越来越,应该参考齿轮热功率计算技术文件。
对于减速器结构设计,本书提醒要注意以下问题:
1)减速器总体设计和选型。
2)非标准减速器合理设计。
3)减速器箱体设计。
4)减速器润滑和散热。
齿轮传动,作为一种的动力传输方式,被广泛应用于各行业。随着加工工艺的日趋更新,软齿面齿轮已经被逐渐的淘汰,取而代之的是渗碳淬火硬齿面齿轮。它在更小的体积内,实现了更大的扭矩传递,并且在齿部的弯曲强度和接触强度上,得到很大的提高。硬齿面齿轮传动因其较高的承载能力和更长的使用寿命被各行业所认可。
硬齿面齿轮是指硬度在 HRC40 以上的齿轮,通常都需要热处理进行淬火或者渗碳淬火,在热处理之后,由于热处理会使工件产生变形,其热前加工的精度会普遍降低 1-2 级,所以热后需要进行精加工。这样较的硬齿面齿轮较普遍的加工方式为行滚齿,然后进行渗碳淬火,后再进行齿面磨削,这样的工艺可以使整个齿面得到相同的组织以及渗碳层深度,齿面终硬度可以达到 HRC58-HRC62,并且获得很高的齿面几何精度及表面光洁度。这也是现在行业内的主导工艺,其核心工序为滚齿和磨齿。
热后磨齿
磨齿是获得齿面的有效和可靠的方法,将滚齿余量及其变形量磨掉。为了使齿轮在负载状态下受力及啮合更加合理,齿轮会在标准渐开线齿形和齿向上做一定的修正。CNC 磨齿机通过预设的参数,将齿部形状磨削为要求的几何精度。并且通过选择匹 配的砂轮及修整参数,磨削达到终的粗糙度要求,行业内普遍的要求为 Ra0.8,也有一些特殊应用,如风力发电齿轮箱等,需要达到 Ra0.6 甚至更高。其加工方法分为展成磨和成型磨。
成型磨
砂轮被金刚轮修整成与齿形相同的形状,逐个齿进行磨削。这种生产方式较为柔性,在更换齿轮型号时,只需要将砂轮修整为与其对应的形状即可。整个修整与加工过程由预设的 CNC 轴进行控制。这项加工技术在国际上比较的公司有 Gleason、Hoefler 等, 其生产的成型磨机床加工精度可以达到 3 级,而且由于整个齿面的形状是由成型的砂轮一次连续磨削而成,所以整个齿面粗糙度可以达到 Ra0.4-Ra0.8。
在实际生产过程中,太高的表面质量要求,以及高的磨削进给量,都会产生更高的烧伤风险。不同的企业也都采取更为精细化的磨削参数进行加工,来保持成本优势。随着科技的进步,一些新的工艺也正在出现来满足市场需求,比如在成型模后进行超精磨,这样工件的表面光洁度可以达到 Ra0.2;或者用双磨头加工,其中一个磨头用于粗磨,另一个磨头安装特殊的砂轮用于精磨,来达到效率和质量的双赢。
硬齿面减速机是一种相对精密的机械,使用它的目的是降低转速,增加转矩,适用于高速轴转速不大于1500转/分,齿轮传动圆周速度不大于20米/秒,工作环境温度为-40℃—45℃的环境中。
硬齿面减速机的齿轮采用高强度低碳合金钢经渗碳淬火而成,齿面硬度高,齿轮均采用数控磨齿工艺,精度高,接触性好,传动,运转平稳,噪音低;体积小、重量轻、使用寿命长、承载能力高;易于拆检,易于安装。
1、中心距、中心高、传动比均采用数系的数。
2、齿轮参数、结构经过计算机优化设计。
3、齿轮采用高强度低碳合金钢经渗碳淬火磨齿。齿面硬度高,齿轮精度达国际标准6级。
4、传动、噪声低、承载能力达90年代世界水平。
为了适应激烈的市场竞争,并能更好的服务于国内金属制品行业,拉丝机传动系统的设计也正在向硬齿面齿轮的传动形式转变,具体表现就是市场上已经采用较多的强力窄v联组带加拉丝机硬齿面减速箱的组合,采用适应拉丝机整体结构的标准减速机,并将此减速机与安装箱体、主轴、卷筒等有效的结合在一起,形成一套以硬齿面齿轮为主要传动形式的拉丝机传动系统。
硬齿面减速机采用了斜齿轮传动,在闭式啮合时效率为0.95--0.98,理论大传递功率《50000kw;速度v/(m/s) < =130;对于二次包络蜗轮付,在加工精度较高、润滑情况良好的情况下,其传动只能达到0.95,但在一般的蜗杆传动中,其效率一般范围是0.70-0.92。由于受发热限制,大传递功率Pi(kw)=750,但通常《50 kw。高速、大规格拉丝机已经成为了市场的主流,其中大功率的电机在大规格拉丝机上的应用相当普遍,采用传动的硬齿面齿轮传动形式,会给用户带来较好的经济效益,有良好的市场预期。
减速器的级传动为格里森制弧齿锥齿轮,第二、第三级传动则为渐开线圆柱斜齿轮。
减速器的润滑:一般情况下,减速器的齿轮和轴承采用油池飞溅润滑,自然冷却。只有当减速器工作平衡温度超过规定值,或承载功率超过热功率PG1时,方采用循环润滑,或采用加冷却管的油池润滑。