缴费快速多样化:除出口收费外,车牌识别系统还提供多种自助缴费终端、收费、商家代缴、手持终端收费等多种缴费方式,进一步方便车主,提高出口通行效率。
避免收费漏洞风险:有了车牌识别系统道闸一体机后,系统不以IC卡为收费介质,能够有效制止换卡、一卡多用等停车场普遍存在的逃费手段。同时,系统具备严密的收费解缴、收费稽核管理体系,能大程度的避免各种人为原因导致的收费漏洞,停车费的足额,如实收取。
节能减排、低碳环保:通过车牌识别一体机的快速车牌识别,车辆进出无需频繁刹车起步,减少碳排放量和车辆的损耗,降低PM2.5,共同创造绿色中国。
高速公路缴费管理:在高速路的各个出入口安装车牌识别系统,车辆驶入时识别车辆牌照将入口资料存入收费系统,车辆到达出口时再次识别其牌照并根据牌照信息调用入口资料,结合出入口资料实现收费管理。这种应用可以实现自动计费并可防止作弊,避免了应收款的流失。
车牌识别系统的预处理
由于图像质量容易受光照、天气、相机位置等因素的影响,所以在识别车牌之前需要先对相机和图像做一些预处理,以得到车牌清晰的图像。一般会根据对现场环境和已经拍摄到的图像的分析得出结论,实现相机的自动曝光处理、自动白平衡处理、自动逆光处理、自动过爆处理等,并对图像进行噪声过滤、对比度增强、图像缩放等处理。去噪方法有均值滤波、中值滤波和高斯滤波等;增强对比度的方法有对比度线性拉伸、直方图均衡和同态滤波器等;图像缩放的主要方法有近邻插值法、双线性插值法和立方卷积插值等。
车牌识别系统的字符识别
对分割后的字符的灰度图像进行归一化处理,特征提取,然后经过机器学习或与字符数据库模板进行匹配,后选取匹配度的结果作为识别结果。目前比较流行的字符识别算法有:模板匹配法、人工神经网络法、支持向量机法和Adaboost分类法等。模板匹配法的优点是识别速度快、方法简单,缺点是对断裂、污损等情况的处理有一些困难;人工神经网络法学习能力强、适应性强、分类能力强但比较耗时;支持向量机法对于未见过的测试样本具有更好的识别能力且需要较少的训练样本;Adaboost分类法能侧重于比较重要的训练数据,识别速度快、实时性较高。我国车牌由汉字、英文字母和阿拉伯数字3种字符组成,且具有统一的样式,这也是识别过程的方便之处。但由于车牌很容易受外在环境的影响,出现模糊、断裂、污损字符的情况,如何提高这类字符和易混淆字符的识别率,也是字符识别的难点之一。易混淆字符包括:0与D、0与Q、2与Z、8与B、5与S、6与G、4与A等。