人工神经网络技术,计算机及相关技术发达的一些国家开始探讨用人工神经网络技术解决车牌自动识别问题,例如1994年M.M.M.FANHY等就成功地运用了BAM神经网络方法对车牌上的字符进行自动识别,BAM神经网络是由相同神经元构成的双向联想式单层网络,每一个字符模板对应着个BAM矩阵,通过与车牌上的字符比较,识别出正确的车牌号码。
例如一个车牌系统在白天有90%以上的准确度,到了傍晚就降到80%,夜间又降到70%,这种不稳定的系统,比起全天候平均拥有70%准确度的车牌辨识系统更难于整合。因为使用者会认为,既然白天的辨识率有90%,那全天候的准确率都要达到90%才合理,这样的规格还不包括奇怪的环境干扰(暴雨袭击、冰雹、浓雾区段等),与架设环境限制(高度限制、风大摇晃限制、不容易遭受人为破坏等)。
在日常录入违法号牌信息中发现车辆号牌信息与系统显示的车牌信息不符时,民警通过核查车辆信息后,把有违反交通法规的车辆信息录入指挥中心的黑名单报警系统。此车在辖区内行驶时,号牌会被系统自动识别报警。
智能车牌识别系统不抬杆原因多种。智能车牌识别系统是由车牌识别一体机、工业级到咋、语音集成显示屏及系统软件等部分组成,所以我们要排查问题的所在,工作流程为地感线圈→车辆检测器→车牌识别一体机→收费系统→控制器→道闸,所以原因工作中负责传输信号的网线或者信号线的连接问题,或者是工作中部件是否出故障等;
图片初级处理——灰度化、二值化大家都知道,灰色是介于白色和黑色之间的颜色,而且这个灰色深浅不一样,所以白色和黑色之间的灰色就有很多。这颜色一多,计算机就眼花缭乱了。所以呢,干脆把图片二值化。啥叫二值化呢?就是让图片只有黑色和白色,就是只有两个颜色值,顾名思义把图片搞成黑白二色的过程就是二值化。再形象的比喻一下,就是熊猫化!在计算机RGB颜色空间内,白色就是255,黑色就是0,其他颜色就是在这0-255之间了。
图形检索,定位车牌图片处理到这一步,来了——车牌检索。动脑筋的朋友可能已经意识到了,车牌是规则的长方形,我们只要找二值化后图片里的长方形就好了。问题来了,你找长方形,问题是有些车辆的撒热窗就是长方形。爱动脑筋的小伙伴已经注意到了,车牌的长宽比与车身其他位置的形状长宽比不同。掌握了上面的基本常识,那么我们距离找到车牌就更近了。计算机扫描整个二值化的图片,由左到右,由上到下,把颜色从黑到白或者由白到黑的像素全部记录下来。然后根据这些像素来计算哪个区域是长方形,并且符合车牌的比例。