控制系统已被广泛应用于人类社会的各个领域。在工业方面,对于冶金、化工、机械制造等生产过程中遇到的各种物理量,包括温度、流量、压力、厚度、张力、速度、位置、频率、相位等,都有相应的控制系统。在此基础上通过采用数字计算机还建立起了控制性能更好和自动化程度更高的数字控制系统,以及具有控制与管理双重功能的过程控制系统。在农业方面的应用包括水位自动控制系统、农业机械的自动操作系统等。
控制系统其实从20世纪40年代就开始使用了,早期的现场基地式仪表和后期的继电器构成了控制系统的前身。以PLC和DCS为代表,从70年****始应用以来,在冶金、电力、石油、化工、轻工等工业过程控制中获得迅猛的发展。从90年****始,陆续出现了现场总线控制系统、基于PC的控制系统等,将简要介绍各种常见的控制系统,并分析控制系统的演进过程和发展方向。
70年代中期,由于设备大型化、工艺流程连续性要求高、要控制的工艺参数增多,而且条件苛刻,要求显示操作集中等,使已经普及的电动单元组合仪表不能完全满足要求。在此情况下,业内厂商经过市场调查,确定开发的DCS产品应以模拟量反馈控制为主,辅以开关量的顺序控制和模拟量开关量混合型的批量控制,它们可以覆盖炼油、石化、化工、冶金、电力、轻工及市政工程等大部分行业。
1975年前后,在原来采用中小规模集成电路而形成的直接数字控制器(DDC)的自控和计算机技术的基础上,开发出了以集中显示操作、分散控制为特征的集散控制系统(DCS)。由于当时计算机并不普及,所以开发DCS应强调用户可以不懂计算机就能使用DCS;同时,开发DCS还应强调向用户提供整个系统。此外,开发的DCS应做到与中控室的常规仪表具有相同的技术条件,以可靠性、安全性。
在控制系统中,仪器仪表作为其构成元素,它的技术进展是跟随控制系统技术的发展而发展的。目前,控制理论已发展到智能控制的新阶段,自动化仪器仪表的智能化就成为必然了。
仪器仪表的智能化主要归结于微处理器和人工智能技术的发展与应用。
采用便携式设计,具有质量和体积小,具有运输方便的特点,因而不受扫描方向、物件大小及狭窄空间的局限,可实现现场扫描。
扫描过程在PC屏幕上同步呈现3 E维数据,边扫描边调整;通过对定位点的自动拼接,可以做到整体360度扫描一次成型,同时避免漏扫盲区。
直接以三角网格面的形式录入数据,由于没有使用点云重叠分层,避免了对数据模型增加噪音点;而且采用基于表面优运算法则的技术,因此扫描得越多,数据获取就越。
数据输出时,自动生成的STL多边形文件,马上可以读入CAD软件以及快速成型机和一些加工设备;同时兼容多种逆向软件,可以生成文鸡各种CAD格式文件。
自动测试设备(ATE):模块可用于构建高度灵活和可扩展的自动测试设备。它提供了多个通道的数字输入和输出功能,可以与其他测试仪器集成,实现复杂的测试和测量任务。
数据采集和控制系统:该模块适用于数据采集和实时控制应用。