大孔树脂骨架部分的性质与凝胶树脂基本相同,但大孔树脂具有且孔径较大的物理孔结构。这一特性使大孔树脂在耐污染、机械强度、抗氧化性等使用性能方面比凝胶树脂更具优势,但大孔树脂的交换容量一般会相对较低,且制造成本相对较高。
树脂的应用领域比较广泛,通常是应用在电镀行业废水处理与重金属回收,PVC行业废水除汞,半导体行业超纯水制备,蒸发冷凝水氨氮深度处理,垃圾渗滤液氨氮深度处理,地下矿井水氟化物控制,农村饮用水铁锰控制,生活污水脱氮除磷,矿泉水硝酸盐,溴化物,砷酸盐控制等水处理工程与技术服务。
凝胶型离子交换树脂特性
1.凝胶型离子交换树脂在线性流速为10m/h的条件下,压力降约为13kPa/m;
2.逆洗流速为6.5m/h,水温为15摄氏度条件下,树脂床体膨胀率为70%;
3.压降数据主要以干净水为进水次采水周期方有效。
凝胶型树脂外观呈透明球状颗粒,其孔隙度很小,一般都在3nm以下,这些孔隙不是真正意义上的“孔”,而是由高分子链和交联剂相键合而形成的,它随运行条件而改变;在干的凝胶型树胶中,这些孔实际上是“消失"的。当凝胶型树脂浸人水中后,由于活性基团发生水化后,才显现出来。
用普通合成法制成的离子交换树脂,由许多不规则的网状高分子组成,类似凝胶,所以称其为凝胶型树脂,如津南化工厂生产的001×7、201×7等都属于凝胶型树脂。凝胶型树脂在水中会发生溶胀,体积变大,这种溶胀会使树脂的机械强度降低;同时,当凝胶型树脂在不同离子型态时,膨胀率也会发生变化。这样就会因为树脂的反复膨胀、收缩而使树脂颗粒易于破碎。
离子交换树脂的几何形状,尺寸和结构可以在不同类型之间变化。大多数离子交换树脂交换系统使用由微小的多孔微珠组成的树脂床,尽管一些系统(例如用于电渗析的系统)使用片状网状树脂。离子交换树脂珠通常是小的和球形的,半径仅为0.25至1.25毫米。根据应用和系统设计,树脂珠粒可具有均匀的粒度或高斯尺寸分布。大多数应用使用凝胶树脂珠,具有半透明的外观,并提供高容量和化学效率。大孔树脂由于其不透明的白色或黄色外观而可识别,通常保留用于苛刻的条件,因为它们具有相对较高的稳定性和耐化学性。
离子交换树脂基质通过在称为聚合的过程中使烃链彼此交联而形成。交联使树脂聚合物具有更强,更有弹性的结构和更大的容量(按体积计)。虽然大多数IX树脂的化学组成是聚苯乙烯,但某些类型是由丙烯酸(丙烯腈或丙烯酸甲酯)制造的。然后树脂聚合物经历一种或多种化学处理以将官能团结合到位于整个基质中的离子交换位点。这些官能团赋予IX树脂其分离能力,并且从一种树脂到下一种树脂会有很大差异。
什么是树脂再生?
随着时间的推移,污染物离子与离子交换树脂中的所有可用交换位点结合。一旦树脂耗尽,通过所谓的再生循环将其恢复以供进一步使用。在再生循环期间,通过施加浓缩的再生溶液基本上逆转离子交换反应。根据树脂的类型和手头的应用,再生剂可以是盐,酸或苛性碱溶液。随着再生循环的进行,离子交换树脂释放污染物离子,将它们交换为再生溶液中存在的离子。污染物离子将作为再生剂流出物流的一部分离开树脂系统,并且需要被适当地排出。
当树脂再生过程中,一旦使用了质量不好的工业盐酸或副产品盐酸,其就会对树脂造成损害,游离氯的含量应小于0.1mg/L。防止树脂被氧化的方法活性炭过滤。因为活性炭具有能够除去水中游离氯的原理,经过一系列化学反应,当活性炭表面吸附的氯已经达到一定值时就会发生很多反应。