三维坐标测量机(CMM)的精密应用:三维坐标测量机是精密制造业中的“显微镜”,通过精密的机械结构、传感器和的测量软件,对复杂形状和尺寸的零部件进行、的三维测量。广泛应用于航空航天、汽车制造、电子通讯等行业,确保产品的每一个细节都符合设计要求,提升产品品质和竞争力。
光学干涉测量技术在精密加工中的应用:光学干涉测量技术利用光的干涉原理,通过测量光波在物体表面反射或透射时产生的干涉图样,来测定物体的形状、表面粗糙度等参数。该技术具有高灵敏度和非接触测量的优点,在光学元件加工、半导体制造、微纳米加工等领域得到广泛应用,推动了这些领域向更和更复杂结构的发展。
形位公差通常通过特定的符号和数值来表示,这些符号和数值被标注在零件图纸上,以指导生产和检验。例如:
直线度:用符号“┬”表示,并在其后面标注公差值,如“┬0.01”表示直线度公差为0.01mm。
同轴度:用符号“◎”表示,并在其后面标注公差值,如“◎0.05”表示同轴度公差为0.05mm。
位置度:用符号“⊕”表示,并配以相应的基准和公差框格,如“⊕Φ0.1 A-B-C”表示某要素的位置度公差为Φ0.1mm,且以A、B、C三个基准面为基准。
公差原则是正确处理尺寸公差与形位公差之间关系的规定。常见的公差原则包括:
立原则:尺寸公差与形位公差彼此无关,分别满足各自的要求。
包容要求:用于单一要素,表示实际要素应遵守大实体边界,其局部实际尺寸不得超出小实体尺寸。
大实体要求:适用于中心要素,要求该要素的实际轮廓不得超出大实体实效边界,并且实际尺寸不得超出极限尺寸。
小实体要求:当被测要素的实际轮廓偏离其小实体状态时,允许的形位误差值可以增加,偏离多少就增加多少。
可逆要求:指中心要素的形位误差值小于给出的形位公差值时,允许在满足零件功能要求的前提下扩大尺寸公差。
直尺测量:使用直尺或卷尺等工具直接对准待测尺寸的两个端点,读取刻度值以获取尺寸大小。这种方法简单直接,适用于简单的线性尺寸测量。
游标卡尺测量:游标卡尺是一种精密测量工具,用于测量长度、宽度和深度等尺寸。其测量精度一般可达到0.01毫米,适用于各种形状的尺寸测量,尤其适用于小尺寸的测量。
千分尺测量:千分尺的测量精度更高,一般可达到0.001毫米,适用于各种形状和大小的精密尺寸测量,尤其适用于微小尺寸的测量。