在使用IGBT模块时,尽量不要用手触摸驱动端子部分,当要触摸模块端子时,要先将人体或衣服上的静电用大电阻接地进行放电后,再触摸; 在用导电材料连接模块驱动端子时,在配线未接好之前请先不要接上模块; 尽量在底板良好接地的情况下操作。 在应用中有时虽然了栅驱动电压没有超过栅大额定电压,但栅连线的寄生电感和栅与集电间的电容耦合,也会产生使氧化层损坏的振荡电压。为此,通常采用双绞线来传送驱动信号,以减少寄生电感。在栅连线中串联小电阻也可以抑制振荡电压。
此外,在栅—发射间开路时,若在集电与发射间加上电压,则随着集电电位的变化,由于集电有漏电流流过,栅电位升高,集电则有电流流过。这时,如果集电与发射间存在高电压,则有可能使IGBT发热及至损坏。
在安装或更换IGBT模块时,应十分重视IGBT模块与散热片的接触面状态和拧紧程度。为了减少接触热阻,好在散热器与IGBT模块间涂抹导热硅脂。一般散热片底部安装有散热风扇,当散热风扇损坏中散热片散热不良时将导致IGBT模块发热,而发生故障。因此对散热风扇应定期进行检查,一般在散热片上靠近IGBT模块的地方安装有温度感应器,当温度过高时将报警或停止IGBT模块工作。
IGBT模块由于具有多种优良的特性,使它得到了快速的发展和普及,已应用到电力电子的各方各面。因此熟悉IGBT模块性能,了解选择及使用时的注意事项对实际中的应用是十分必要的。
随着国内IGBT企业斯达半导的上市,并挤进IGBT模块供应商0,国产替代技术已经达到门槛。功率半导体是半导体行业的细分领域,虽不像集成电路一样被大众熟知,但其重要性不可忽视。1990-2010年,这20年时间内,IGBT节能效果为客户累计节省了约18万亿美元,减少了约100万亿磅的二氧化碳排放。IGBT作为电子电力装置和系统中的“CPU”,节能减排的主力军,有着强大的生命力,我们现在还离不开IGBT!
IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。
IGBT模块是由IGBT(绝缘栅双极型晶体管芯片)与FWD(续流二极管芯片)通过特定的电路桥接封装而成的模块化半导体产品;封装后的IGBT模块直接应用于变频器、UPS不间断电源等设备上;
静态特性
三菱制大功率IGBT模块
三菱制大功率IGBT模块
IGBT 的静态特性主要有伏安特性、转移特性。
IGBT 的伏安特性是指以栅源电压Ugs 为参变量时,漏极电流与栅极电压之间的关系曲线。输出漏极电流比受栅源电压Ugs 的控制,Ugs 越高, Id 越大。它与GTR 的输出特性相似.也可分为饱和区1 、放大区2 和击穿特性3 部分。在截止状态下的IGBT ,正向电压由J2 结承担,反向电压由J1结承担。如果无N+缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT 的某些应用范围。
IGBT 的转移特性是指输出漏极电流Id 与栅源电压Ugs 之间的关系曲线。它与MOSFET 的转移特性相同,当栅源电压小于开启电压Ugs(th) 时,IGBT 处于关断状态。在IGBT 导通后的大部分漏极电流范围内, Id 与Ugs呈线性关系。高栅源电压受大漏极电流限制,其佳值一般取为15V左右。