降耗是不让热量产生;导热是把热量导走不产生影响;布局是热也没散掉但通过一些措施隔离热敏感器件。
如果导热方案行不通,那就只有通过降耗(选择发热低的芯片)或者重新布局。
光模块热源主要在PCB芯片和TOSA和ROSA。下面介绍从内部优化这两处散热的方法:
TOSA(ROSA)
相关技术中,通过风冷方式实现光模块散热。具体的,在光模块上安装风冷散热器,发热器件将热量传递给光模块上盖,光模块的上盖将热量传递给风冷散热器。这样,热量需要流过两个相接触的固体的交界面,导致热阻过大,散热效果不佳。因此,需要提供散热效果更佳的方案。
内部散热
光模块内部发热部件包括PCB芯片和光器件(TOSA和ROSA),通过导热界面材料将内部的热量传导至外壳部分。
• 光器件附近
光器件(TOSA/ROSA)与上下外壳之间填充导热材料
选用低热阻、对器件压力小的材料
•芯片部位
选用柔软可压缩的高导热材料和吸波材料
•在PCB板下表面与模块封装外壳之间填充一层薄的绝缘导热物质,将热量向下传导等。
水冷散热是冷却工作介质在水泵的驱动下,通过管道,把热量从液冷散热器转移到环境中,从而实现散热目的。 可以减少风扇的数量,从而减少风扇所产生的振动及噪音。 其次由于水的高比热容的物理特性,使得水冷散热效果比风冷高出许多。然而,相比风冷散热,水冷散热器更复杂,因冷却工作介质关系,存在一定的泄漏风险,整体成本也比其他散热方式高。水冷可分为压管式,真空钎焊,搅拌摩擦焊,冲压式,一体式五种加工方式。
热管是一种具有很高导热性能的传热元件,热管问世以来,使电力电子装置的散热系统有了新的发展。无论何种散热方式,其终散热媒体是空气,其他都是中间环节。空气自然对流冷却是直接和简便的方式,热管使自冷的应用范围迅速扩大。因为热管自冷散热系统无需风扇、没有噪音、免维修、安全可靠,热管风冷甚至自冷可以取代水冷系统,节约水资源和相关的辅助设备投资。此外,热管散热还能将发热件集中,甚至密封,从而将散热部分移到外部或远处,使设备更易做到防尘、防潮、防爆,提高设备的安全可靠性和应用范围。
压铸是将液态金属或半液态金属,在高压作用下,快速填充到压铸模具的型腔中,并在压力作用下快速凝固而获得产品的方法。压铸产品生产,不用机加工可直接快速生产出结构复杂零件。缺点:模具费相对较高、开发周期相对较长;不适合小量生产;压铸件中容易产生气孔;合金熔点高时模具寿命不长。除了压铸,散热领域还有像钣金、冷锻、CNC加工成形等工艺。针对不同行业及产品结构的需要,每种工艺各有特点,可以根据产品的不同用途和用量选择适合的工艺。
了解供热系统
一般供热系统有以下几种:a、集中供热 b、有家庭热水中心 c、电厂等余热供热 d、开放式无压锅炉供热 e、天然气供热
试模或刚开始生产时,挤压机自动档关掉,各段开关归零位。从小压力开始慢慢的起压,出料大概3-5分钟,铝填充过程时主要控制好压力。压力控制在100Kg/cm2以内,电流表数据为2-3A以内,一般80-120Kg/cm2可以出料,之后才可慢慢的加速,正常生产时挤压速度以压力小于120Kg/cm2为准。
主要有高压铸铝和拉伸铝合金焊接两种。其优点主要有:铝的散热性较好,节能的特点十分明显,在同样的房间里,如果用同样规格的暖气片,铝铸的片数要比钢制少;铝的耐氧化腐蚀性能好,不用添加任何添加剂,其原理是,铝一旦遇到空气中氧,便生成一层氧化膜,这层膜既坚韧又致密,防止了进一步对本体材料的腐蚀。