波峰焊机基本上采用热辐射方式进行预热,常用的波峰焊预热方法有强制热风对流、电热板对流、电热棒加热及红外加热等。在这些方法中,强制热风对流通常被认为是大多数工艺里波峰焊机有效的热量传递方法。在预热之后,线路板用单波(λ波)或双波(扰流波和λ波)方式进行焊接。对穿孔式元件来讲单波就足够了,线路板进入波峰时,焊锡流动的方向和板子的行进方向相反,可在元件引脚周围产生涡流。这就象是一种洗刷,将上面所有助焊剂和氧化膜的残余物去除,在焊点到达浸润温度时形成浸润。
着火
1.助焊剂燃点太低未加阻燃剂。
2.没有风刀,造成助焊剂涂布量过多,预热时滴到加热管上。
3.风刀的角度不对(使助焊剂在PCB上涂布不均匀)。
⒋PCB上胶条太多,把胶条引燃了。
5.PCB上助焊剂太多,往下滴到加热管上。
6.走板速度太快(FLUX未完全挥发,FLUX滴下)或太慢(造成板面热温度
7.预热温度太高。
8.工艺问题(PCB板材不好,发热管与PCB距离太近)。
腐蚀
(元器件发绿,焊点发黑)
⒈ 铜与FLUX起化学反应,形成绿色的铜的化合物。
⒉ 铅锡与FLUX起化学反应,形成黑色的铅锡的化合物。
⒊ 预热不充分(预热温度低,走板速度快)造成FLUX残留多,
4.残留物发生吸水现象,(水溶物电导率未达标)
5.用了需要清洗的FLUX,焊完后未清洗或未及时清洗。
6.FLUX活性太强。
7.电子元器件与FLUX中活性物质反应。
在波峰焊接阶段,PCB要浸入波峰中将焊料涂敷在焊点上,因此波峰的高度控制就是一个很重要的参数。可以在波峰上附加一个闭环控制使波峰的高度保持不变,将一个感应器安装在波峰上面的传送链导轨上,测量波峰相对于PCB的高度,然后用加快或降低锡泵速度来保持正确的浸锡高度。锡渣的堆积对波峰焊接是有害的。如果在锡槽里聚集有锡渣,则锡渣进入波峰里面的可能性会增加。可以通过设计锡泵系统来避免这种问题,使其从锡槽的底部而不是锡渣聚集的顶部抽取锡。采用惰性气体也可减少锡渣并节省费用。
焊料过多
焊接温度过低或传送带速度过快,使熔融焊料的黏度过大。锡波温度为250±5℃,焊接时间3-5s。
根据PCB尺寸,是否多层板,元器件多少,有无贴装元器件等设置预热温度。
焊剂活性差或比重过小。更换焊剂或调整适当的比重。
焊盘、插装孔、引脚可焊性差。提高印制板加工质量,元器件先到先用,不要存放在潮湿环境中。
焊料中锡的比例减小,或焊料中杂质成分过高(CU<0.08%),使熔融焊料的黏度增加,流动性变差。锡的比例<61.4%时,可适量添加一些纯锡,杂质过高时应更换焊料。
焊料残渣太多。每天结束工作后应清理残渣。
焊料不足
产生原因 预防对策PCB预热和焊接温度太高,使熔融焊料的黏度过低。预热温度在90-130℃,有较多贴装元器件时温度取上限;锡波温度为250±5℃,焊接时间3-5s。
插装孔的孔径过大,焊料从孔中流出。插装孔的孔径比引脚直径大0.15-0.4mm(细引脚取下限,粗引脚取上限)。
细引线大焊盘,焊料被拉到焊盘上,使焊点干瘪。焊盘设计要符合波峰焊要求。
金属化孔质量差或助焊剂流入孔中。反映给印制板加工厂,提高加工质量。
波峰高度不够。不能使印制板对焊料产生压力,不利于上锡。波峰高度一般控制在印制板厚度的2/3处。
印制板爬坡角度偏小,不利于焊剂排气。印制板爬坡角度为3-7°
冷焊名词解释:波峰焊后焊点出现溶涌状不规则的角焊缝,基体金属盒钎料之间不润湿或润湿不足,甚至出现裂纹。由于传送带震动,冷却时受到外力影响,使焊锡紊乱。检查电机是否有故障,检查电压是否稳定。传送带是否有异物。焊接温度过低或传送带速度过快,使熔融焊料的黏度过大。使焊点表面发皱。锡波温度为250±5℃,焊接时间3-5s。温度略低时,传送带速度应调慢一些。
空洞形成原因:
1.孔线配合关系严重失调,孔大引线小波峰焊接几乎出现空穴现象
2.PCB打孔偏离了焊盘中心。
3.焊盘不完整。
4.孔周围有毛刺或被氧化。
5.引线氧化,脏污,预处理不良。
溅锡球(珠)形成原因:
1.PCB在制造或储存中受潮。
2.环境湿度大,潮气在多缝的PCB上凝聚,厂房内又未采取验潮措施。
3.镀层和助焊剂不相溶,助焊剂选用不当。
4.漏涂助焊剂或涂覆量不合区,助焊剂吸潮夹水。
5.阻焊层不良,沾附钎料残渣。
6.基板加工不良,孔壁粗糙导致槽液积聚,PCB设计时未做分析。
7.预热温度不合适。
8.镀银件密集。
9.钎料波峰状选择不合适。