在国内的一切的超细粉体研磨的设备中,呈现过很多设备。但是它们的呈现基本上都是为了处理一个问题。也就是破坏到超细粉这一问题,先后有破碎机的呈现,球磨机等多种设备。不论从小型试验仍是到大型的出产,它们都有不同的特点,同时也都存在不同的问题。
筒体在回转的过程中,研磨体也有滑落现象,在滑落过程中给物料以研磨作用,为了有效利用研磨作用,对物料粒度较大的一般20目磨细时候,把磨体筒体用隔仓板分隔为二段,即成为双仓,物料进入仓时候被钢球击碎,物料进入第二仓时候,钢段对物料进行研磨,磨细合格的物料从出料端空心轴排出,对进料颗粒小的物料进行磨细时,如砂二号矿渣,粗粉煤灰,磨机筒体可不设隔板,成为一个单仓筒磨,研磨体也可以用钢段。
原料通过空心轴颈给入空心圆筒进行磨碎,圆筒内装有各种直径的磨矿介质(锆珠、钢球、钢棒或砾石等)。当圆筒绕水平轴线以一定的转速回转时,装在筒内的介质和原料在离心力和摩擦力的作用下,随着筒体达到一定的高度,当自身的重力大于离心力时,便脱离筒体内壁抛射下落或滚下,由于冲击力而击碎矿石。同时在磨机转动过程中,磨矿介质相互间的滑动运动对原料也产生研磨作用。磨碎后的物料通过空心轴颈排出。
纳米磨机在陶瓷行业也是属于两用型陶瓷机械,可以用于生料的研磨混合,也可以用于成品的加细处理和成品的出货混料。特别是部分釉用产品使用砂磨机水磨处理,例如釉用色料中的黑色和部分镨黄产品,水磨处理的品质和加细机加细的产品性能有明显的区别。另外,陶瓷色料中的锆铁红和铝铁红等产品,使用砂磨机混料来进行生产,锆珠的研磨配料时间在8-12个小时之间。砂磨机使用时的原料、球石、水的比例也是关键因素之一,合理的配比可以提高研磨效率,减少研磨时间。
但传统的研磨工艺在应用中受到了一定限制,存在加工效率低、加工成本高、加工精度和加工质量不稳定等缺点。随着科技的不发断发展创新,研磨在研磨技术上有了飞跃的突破,如磁力研磨机等解决了传统研磨存在的绝大部分缺点,提高了研磨技术水平,在研磨加工精度和加工质量(达到了纳米级)的同时,还显著降低加工成本,提高加工效率,使研磨技术进一步实用化,有利于研磨技术的推广应用。
通常,磨珠的比重越大,冲量越大,研磨效率越高,而磨床的接触部分(圆柱体、分散盘等)磨损相对较大,因此浆料的粘度和流动匹配成为关键。低密度磨粒适用于低粘度浆料。高密度磨粒适用于高粘度浆料。理论上,硬度较高的珠子磨损率较低。
冷却水温度是影响磨床研磨效率的重要因素之一。在研磨介质剧烈运动的条件下,机械能转化为热能,产生大量的热量。随着温度的升高,材料会被胶合,终颗粒的质量也会降低。零陵水的温度直接影响研磨室的工作温度,从而影响研磨效率。
在催化裂化催化剂生产过程中,伴有大量细粉和悬浮物产生,若无有效回收办法,这些物料的排放既会降低产品收率,又会造成环境污染。有限的解决方法是将这些物料收集、磨细(小于3微米)后返回成胶系统,从而达到回收目的。另外,通过对喷雾前胶体进行砂磨处理,可以改善产品强度。
纳米颗粒制备常用的方法是纳米砂磨机,它是大量制备纳米晶粉末的较经济的方法,不少科学研究表明,属、端际固溶体和金属间化合物可以通过纳米砂磨机制成纳米颗粒,颗粒尺寸决定于球磨条件和材料成分。由于所制备的产品粒度很细,故研磨介质的直径也很小,如采用1mm的介质磨球,可产生l-2um的超细颗粒,用回转磨则可制备粒度为0.2-1um的Al2O3超微颗粒。又如Ti-10%Cu(原子比)经纳米砂磨机合金化后形成6-8nm的颗粒,由于Cu在晶界的偏析,阻碍了颗粒成长,使得该纳米晶粒非常稳定。除球磨机跟纳米砂磨机外,还有其他磨冲机也可用于超细颗粒的制备,如胶体磨、气流磨等。