校准
校准是提高三坐标检测精度的关键步骤。通过定期校准机器,可以确保机器的各部件处于正确的位置和角度。此外,校准还可以纠正由于机器老化或部件磨损导致的任何偏差。
测量工件尺寸:通过点与点之间的距离得出结果,或使用“构造对称线”等方法找基准原点C。
查看形位公差和孔的位置度:先选基准再选被测,根据配合情况选择MMC或S原则,并输入理论值进行合格判定。
激光测距技术:在现代工业与科研领域,激光测距技术已成为不可或缺的工具。该技术利用激光束的直线传播特性和极小的发散角,实现非接触式测量,精度可达微米级甚至纳米级。无论是测量大型建筑结构的尺寸,还是精密机械部件的微小位移,激光测距仪都能提供准确无误的数据,为质量控制和工艺优化提供坚实支撑。
纳米级扫描电子显微镜(SEM)探索微观世界:扫描电子显微镜利用聚焦电子束在样品表面扫描,激发二次电子等信号来成像,其分辨率可达到纳米级,甚至亚纳米级。在材料科学、生物医学、半导体技术等领域,SEM成为研究微观结构、表面形貌和化学成分的重要工具,为精密量测和科学研究开辟了全新的视角。
形位公差是指加工成的零件的实际表面形状和相互位置,对理想形状与理想位置的允许变化范围。它涵盖了形状公差和位置公差两大类。
分类:
形状公差:指单一实际要素的形状所允许的变动全量,如直线度、平面度、圆度、圆柱度等。
位置公差:指关联实际要素的位置对基准所允许的变动全量,包括定向公差(如平行度、垂直度、倾斜度)和定位公差(如同轴度、对称度、位置度等)。
形位公差通常通过特定的符号和数值来表示,这些符号和数值被标注在零件图纸上,以指导生产和检验。例如:
直线度:用符号“┬”表示,并在其后面标注公差值,如“┬0.01”表示直线度公差为0.01mm。
同轴度:用符号“◎”表示,并在其后面标注公差值,如“◎0.05”表示同轴度公差为0.05mm。
位置度:用符号“⊕”表示,并配以相应的基准和公差框格,如“⊕Φ0.1 A-B-C”表示某要素的位置度公差为Φ0.1mm,且以A、B、C三个基准面为基准。