西门子6SN1118-0DM31-0AA2
SIMODRIVE 611 数字 高标准调节抽拉部件 2 轴 sin/cos 1Vpp。NC 软件 从 09 年 4 月 6 日起需要!
西门子代理商
西门子PLC代理商
西门子授权代理商
西门子模块代理商
西门子总代理商
S7-200 SMART标准型CPU模块的右下角有一个Micro SD 卡的插槽,支持使用市面上通用的 Micro SD 卡来行使功能,支持 FAT32文件系统,支持的卡的容量范围为4G~32G。
使用该 Micro SD 卡可以进行如下功能:
① 恢复 CPU 到出厂默认设置;
② 进行 CPU 的固件版本升级;
③ 进行程序传输。
使用存储卡恢复出厂设置
S7-200 SMART CPU 模块的 SD 卡支持使用 FAT32 文件系统,可以使用通用的 Micro SD卡让其恢复出厂的默认设置。恢复出厂默认设置包括如下几项操作:将 CPU IP 地址恢复为出厂默认设置,清空 CPU 程序块、数据库和系统块。具体步骤如下。
(1) 准备恢复出厂默认设置的文件
① 用 Windows 系统自带的记事本新建一个文本文档,在其中写人字符串“RESET_TO_ FACTORY”,并保存。
② 将该文本文档重新命名为 S7_JOB.S7S(注意后缀名是.S7S)。
③ 将文件“S7 JOB.S7S”拷贝到一个空白的 Micro SD 卡中。
(2) 开始恢复出厂默认设置
① 将 S7-200 SMART CPU 模块断电,然后插入刚才的 Micro SD 卡。
② 将 CPU模块重新上电,它会自动检测到 Micro SD 卡中的内容,并开始执行恢复出厂默认设置。在这个过程中,CPU模块的运行指示灯与停止指示灯会以2Hz的频率交替点亮。
(3) 恢复成功的提示
当运行指示灯熄灭,而停止指示灯开始闪烁时,表示已经成功恢复出厂设置。此时可以取下 Micro SD 卡。
使用存储卡进行固件升级
S7-200 SMART 支持使用存储卡(Micro SD 卡)进行固件升级,地方便了广大用户对产品功能的扩展。使用 Micro SD 卡进行固件升级的步骤如下。
①到西门子官网下载需要升级的固件文件。
②在Windows 操作系统下,用普通读卡器将下载的新的固件文件拷贝到一个空白的 Micro SD 卡中。
③ 将 CPU 模块断电,然后插人带有升级文件的 Micro SD 卡。
④ 将 CPU 模块上电,CPU 会检测到 Micro SD 卡的内容并自动进行固件升级。升级的过程中运行指示灯和停止指示灯会以 2Hz 的频率交替点亮。
⑤当运行指示灯熄灭,而停止指示灯开始闪烁时,表示固件升级完成。此时可以取 Micro SD 卡。
小提示
固件,英文名称“firmware”,是CPU 厂商设计开发的一种软件,其功能是管理CPU的存储、外设等相当于操作系统的角色。因其被固化到 CPU 模块的内部,因此称为“固件”。固件升级其实是一种软件版本的更新,新版本的软件可以更好地利用现有的硬件资源,扩展软件功能,修改老版本的缺陷,提供更多的软件支持。在 S7-200 的时代,CPU 一旦出厂,其固件版本基本就定了,客户不能自己升级版本。要更新版本,将 CPU 返厂,可想而知,这很不方便。如果设备正在被使用,返厂升级固件根本就不能做到。现在 S7-200 SMART 支持使用 SD 卡进行固件升级,确实很方便。
PLC控制系统的设计
PLC 控制系统设计包括硬件设计和软件设计。
3.1 PLC控制系统的硬件设计
硬件设计是PLC控制系统的至关重要的一个环节,这关系着PLC控制系统运行的可靠性、安全性、稳定性。主要包括输入和输出电路两部分。
(1) PLC控制系统的输入电路设计。PLC供电电源一般为AC85—240V,适应电源范围较宽,但为了抗干扰,应加装电源净化元件(如电源滤波器、1:1隔离变压器等);隔离变压器也可以采用双隔离技术,即变压器的初、次级线圈屏蔽层与初级电气中性点接大地,次级线圈屏蔽层接PLC 输入电路的地,以减小高低频脉冲干扰。
PLC输入电路电源一般应采用DC 24V, 同时其带负载时要注意容量,并作好防短路措施,这对系统供电安全和PLC安全至关重要,因为该电源的过载或短路都将影响PLC的运行,一般选用电源的容量为输入电路功率的两倍,PLC输入电路电源支路加装适宜的熔丝,防止短路。
(2) PLC控制系统的输出电路设计。依据生产工艺要求,各种指示灯、变频器/数字直流调速器的启动停止应采用晶体管输出,它适应于高频动作,并且响应时间短;如果PLC 系统输出频率为每分钟6 次以下,应继电器输出,采用这种方法,输出电路的设计简单,抗干扰和带负载能力强。
如果PLC输出带电磁线圈等感性负载,负载断电时会对PLC的输出造成浪涌电流的冲击,为此,对直流感性负载应在其旁边并接续流二极管,对交流感性负载应并接浪涌吸收电路,可有效保护PLC。
当PLC扫描频率为10次/min 以下时,既可以采用继电器输出方式,也可以采用PLC输出驱动中间继电器或者固态继电器(SSR),再驱动负载。
对于两个重要输出量,不仅在PLC内部互锁,建议在PLC外部也进行硬件上的互锁,以加强PLC系统运行的安全性、可靠性。
对于常见的AC220V交流开关类负载,例如交流接触器、电磁阀等,应该通过DC24V微小型中间继电器驱动,避免PLC的DO接点直接驱动,尽管PLC手册标称具有AC220V交流开关类负载驱动能力。
(3) PLC控制系统的抗干扰设计。随着工业自动化技术的日新月异的发展,晶闸管可控整流和变频调速装置使用日益广泛,这带来了交流电网的污染,也给控制系统带来了许多干扰问题,防干扰是PLC控制系统设计时考虑的问题。一般采用以下几种方式:
隔离:由于电网中的高频干扰主要是原副边绕组之间的分布电容耦合而成,所以建议采用1:1超隔离变压器,并将中性点经电容接地。
屏蔽:一般采用金属外壳屏蔽,将PLC系统内置于金属柜之内。金属柜外壳可靠接地,能起到良好的静电、磁场屏蔽作用,防止空间辐射干扰。
布线:强电动力线路、弱电信号线分开走线,并且要有一定的间隔;模拟信号传输线采用双绞线屏蔽电缆。
3.2 PLC 控制系统的软件设计
在进行硬件设计的同时可以着手软件的设计工作。软件设计的主要任务是根据控制要求将工艺流程图转换为梯形图,这是PLC应用的关键的问题,程序的编写是软件设计的具体表现。在控制工程的应用中,良好的软件设计思想是关键,的软件设计便于工程技术人员理解掌握、调试系统与日常系统维护。
(1) PLC控制系统的程序设计思想。由于生产过程控制要求的复杂程度不同,可将程序按结构形式分为基本程序和模块化程序。
基本程序:既可以作为立程序控制简单的生产工艺过程,也可以作为组合模块结构中的单元程序;依据计算机程序的设计思想,基本程序的结构方式只有三种:顺序结构、条件分支结构和循环结构。
模块化程序:把一个总的控制目标程序分成多个具有明确子任务的程序模块,分别编写和调试,后组合成一个完成总任务的完整程序。这种方法叫做模块化程序设计。我们建议经常采用这种程序设计思想,因为各模块具有相对立性,相互连接关系简单,程序易于调试修改。特别是用于复杂控制要求的生产过程。
(2) PLC控制系统的程序设计要点。PLC控制系统I/O分配,依据生产流水线从前至后,I/O点数由小到大;尽可能把一个系统、设备或部件的I/O信号集中编址,以利于维护。定时器、计数器要统一编号,不可重复使用同一编号,以确保PLC工作运行的可靠性。
程序中大量使用的内部继电器或者中间标志位(不是I/O位),也要统一编号,进行分配。
在地址分配完成后,应列出I/O分配表和内部继电器或者中间标志位分配表。
彼此有关的输出器件,如电机的正/反转等,其输出地址应连续安排,如Q2.0/Q2.1等。
(3) PLC控制系统编程技巧。PLC程序设计的原则是逻辑关系简单明了,易于编程输入,少占内存,减少扫描时间,这是PLC 编程遵循的原则。下面介绍几点技巧。
PLC各种触点可以多次重复使用,无需用复杂的程序来减少触点使用次数。
同一个继电器线圈在同一个程序中使用两次称为双线圈输出,双线圈输出容易引起误动作,在程序中尽量要避免线圈重复使用。如果是双线圈输出,可以采用置位和复位操作(以S7-300为例如SQ4.0或者 RQ4.0)。
如果要使PLC多个输出为固定值 1 (常闭),可以采用字传送指令完成,例如 Q2.0、Q2.3、Q2.5、Q2.7同时都为1,可以使用一条指令将十六进制的数据0A9H直接传送QW2即可。
对于非重要设备,可以通过硬件上多个触点串联后再接入PLC输入端,或者通过PLC编程来减少I/O点数,节约资源。例如:我们使用一个按钮来控制设备的启动/停止,就可以采用二分频来实现。
模块化编程思想的应用:我们可以把正反自锁互锁转程序封装成为一个模块,正反转点动封装成为一个模块,在PLC程序中我们可以重复调用该模块,不但减少编程量,而且减少内存占用量,有利于大型PLC 程序的编制。
4 PLC控制系统程序的调试
PLC控制系统程序的调试一般包括I/O端子测试和系统调试两部分内容,良好的调试步骤有利于加速总装调试的过程。
6ES7211-1BE40-0XB0 | CPU 1211C AC/DC/Rly,6输入/4输出,集成2AI |
6ES7211-1AE40-0XB0 | CPU 1211C DC/DC/DC,6输入/4输出,集成2AI |
6ES7211-1HE40-0XB0 | CPU 1211C DC/DC/Rly,6输入/4输出,集成2AI |
6ES7212-1BE40-0XB0 | CPU 1212C AC/DC/Rly,8输入/6输出,集成2AI |
6ES7212-1AE40-0XB0 | CPU 1212C DC/DC/DC,8输入/6输出,集成2AI |
6ES7212-1HE40-0XB0 | CPU 1212C DC/DC/Rly,8输入/6输出,集成2AI |
6ES7214-1BG40-0XB0 | CPU 1214C AC/DC/Rly,14输入/10输出,集成2AI |
6ES7214-1AG40-0XB0 | CPU 1214C DC/DC/DC,14输入/10输出,集成2AI |
6ES7214-1HG40-0XB0 | CPU 1214C DC/DC/Rly,14输入/10输出,集成2AI |
6ES7215-1BG40-0XB0 | CPU 1215C AC/DC/Rly,14输入/10输出,集成2AI/2AO |
6ES7215-1AG40-0XB0 | CPU 1215C DC/DC/DC,14输入/10输出,集成2AI/2AO |
6ES7215-1HG40-0XB0 | CPU 1215C DC/DC/Rly,14输入/10输出,集成2AI/2AO |
6ES72171AG400XB0 | CPU 1217C DC/DC/DC,14输入/10输出,集成2AI/2AO |