Hi,欢迎来到黄页88网!
当前位置:首页 > 山东安胜智能科技有限公司 > 供应产品 > 烟台佛碳漆岗亭厂家

烟台佛碳漆岗亭厂家

更新时间:2024-12-21 14:11:56 [举报]

车牌辨认系统对污损车牌的辨认效果不好
 
  在公路和城市内的实践应用过程中,很难所触及到的车牌都是没有污损的,车牌在运用几年之后,难免会呈现污染和磨损等现象,而在路面上行驶的车辆也很难都是规范洁净的车牌,因而在实践环境中,面对破损污旧的车牌,如何进步车牌辨认系统的辨认才能也是实践需求处理的问题。

图像采集
 
  根据车辆检测方式的不同,图像采集一般分为两种,一种是静态模式下的图像采集,通过车辆触发地感线圈、红外或雷达等装置,给相机一个触发信号,相机在接收到触发信号后会抓拍一张图像,该方法的优点是触发率高,性能稳定,缺点是需要切割地面铺设线圈,施工量大;另一种是视频模式下的图像采集,外部不需要任何触发信号,相机会实时地记录视频流图像,该方法的优点是施工方便,不需要切割地面铺设线圈,也不需要安装车检器等零部件,但其缺点也十分显著,由于算法的极限,该方案的触发率与识别率较之外设触发都要低一些。

字符分割
 
  定位出车牌区域后,由于并不知道车牌中总共有几个字符、字符间的位置关系、每个字符的宽高等信息,所以,为了车牌类型匹配和字符识别正确,字符分割是的一步。字符分割的主要思路是,基于车牌的二值化结果或边缘提取结果,利用字符的结构特征、字符间的相似性、字符间间隔等信息,一方面把单个字符分别提取出来,也包括粘连和断裂字符等特殊情况的处理;另一方面把宽、高相似的字符归为一类从而去除车牌边框以及一些小的噪声。一般采用的算法有:连通域分析、投影分析,字符聚类和模板匹配等。污损车牌和光照不均造成的模糊车牌仍是字符分割算法所面对的挑战,有待更好的算法出现并解决以上问题。

字符识别
 
  对分割后的字符的灰度图像进行归一化处理,特征提取,然后经过机器学习或与字符数据库模板进行匹配,后选取匹配度的结果作为识别结果。目前比较流行的字符识别算法有:模板匹配法、人工神经网络法、支持向量机法和Adaboost分类法等。模板匹配法的优点是识别速度快、方法简单,缺点是对断裂、污损等情况的处理有一些困难;人工神经网络法学习能力强、适应性强、分类能力强但比较耗时;支持向量机法对于未见过的测试样本具有更好的识别能力且需要较少的训练样本;Adaboost分类法能侧重于比较重要的训练数据,识别速度快、实时性较高。我国车牌由汉字、英文字母和阿拉伯数字3种字符组成,且具有统一的样式,这也是识别过程的方便之处。但由于车牌很容易受外在环境的影响,出现模糊、断裂、污损字符的情况,如何提高这类字符和易混淆字符的识别率,也是字符识别的难点之一。易混淆字符包括:0与D、0与Q、2与Z、8与B、5与S、6与G、4与A等。

随着行业的发展,市场各式各样的需求,市场对车牌识别系统(车牌识别系统)的需求越来越广泛,主要分为:软件识别和硬件识别。通过车牌号码的自动识别、自动登陆、自动对比,系统可以实现自动开闸、自动计费、自动验证用户车辆身份、自动区分内外部车辆、自动计算车位数、自动报警等诸多智能化功能。

软件识别:显而易见词义能理解出来是通过软件对车牌号码进行的,通过在电脑上安装一个配套的车牌识别软件,对抓拍的图片进行识别处理。其工作方式是通过摄像机连续抓拍多张照片,选择其中较为清晰的一张,然后通过电脑软件进行字符处理,实现号牌识别的。
 
  因为每次识别需要抓拍多张图片,因此软识别的速度较慢。而且该系统对所抓拍的图片要求也是*的,极为清晰才能达到想要的效果。该系统对现场环境以及调试质量要求*,在诸多环境不乐观的场合都不适用,设备的摆放颇为重要。

标签:烟台不锈钢岗亭日照佛碳漆岗亭厂家
山东安胜智能科技有限公司
信息由发布人自行提供,其真实性、合法性由发布人负责。交易汇款需谨慎,请注意调查核实。
留言询价
×