伺服驱动器是现代运动控制的重要组成部分,被广泛应用于工业机器人及数控加工中心等自动化设备中。尤其是应用于控制交流永磁同步电机的伺服驱动器已经成为国内外研究热点。当前交流伺服驱动器设计中普遍采用基于矢量控制的电流、速度、位置三闭环控制算法。该算法中速度闭环设计合理与否,对于整个伺服控制系统,特别是速度控制性能的发挥起到关键作用。
PLC输出模块的作用是对输出信号进行功率放大。PLC的信号是以电平表示的,要使它在被读出的过程中不发生畸变,就需要有一定的储备能量或者说要有一定的信号功率。输出模块的作用实际就是功率放大器。输出模块就是可以驱动外部负载。
安全回路是保护负载或控制对象以及防止操作错误或控制失败而进行连锁控制的回路。在直接控制负载的同时,安全保护回路还给PLC输入信号,以便于PLC进行保护处理。安全回路一般考虑以下几个方面。
(1)短路保护应该在PLC外部输出回路中装上熔断器,进行短路保护。好在每个负载的回路中都装上熔断器。
(2)互锁与联锁措施除在程序中电路的互锁关系,PLC外部接线中还应该采取硬件的互锁措施,以确保系统安全可靠地运行。
(3)失压保护与紧急停车措施PLC外部负载的供电线路应具有失压保护措施,当临时停电再恢复供电时,不按下“启动”按钮PLC的外部负载就不能自行启动。这种接线方法的另一个作用是,当特殊情况下需要紧急停机时,按下“急停”按钮就可以切断负载电源,同时“急停”信号输入PLC。
(4)极限保护在有些如提升机类超过限位就有可能产生危险的情况下,设置极限保护,当极限保护动作时直接切断负载电源,同时将信号输入PLC。
系统的软件设计根据硬件结构的总体划分,也可以分为两大部分来描述。整个系统的运行如图2所示,FPGA和DSP各自的程序立运行,通过中断信号完成数据的实时交互。FPGA向DSP方向的指令是通过FPGA发送一个EDMA请求,DSP通过响应EDMA请求,建立EDMA通道,开始从FIFO中进行预处理后数据的读取,DSP向FPGA传输数据时,通过向FPGA发送一个中断信号,让其从FIFO中把压缩后的图像数据读出来。
为了使工业二氧化碳排放的捕获、运输和储存更容易获得,ABB 与该市场工程解决方案的 Pace CCS 签署了合作协议。
两家公司将共同运用各自的 知识,通过降低进入该市场所需的资本支出和运营投资,使工业公司更容易实施 CCS 基础设施。
CCS 涉及捕获二氧化碳 (CO 2) 工业过程中的排放物,然后通过船舶或管道将这些排放物从生产地运输到地下储存。根据麦肯锡公司的分析,各国要实现净零排放承诺,到 2050 年行业的吸收率需要增长 120 倍。如果成功,仅 CCS 一项就可以将工业部门产生的碳排放量减少 45%。
混合励磁电机的调速特性 混合励磁同步电动机作为一种新型永磁电机,同时具备永磁同步电动机高功率密度和率的优点,以及电励磁同步电动机气隙磁场易于调节的特点。提出了一种混合磁极式的混合励磁同步电动机,推导了该混合励磁同步电动机的数学模型,得到了混合励磁同步电动机定子电流矢量轨迹 混合励磁电机的调速特性取决于其励磁方式和控制方法。 对于混合励磁电机来说,其永磁体和励磁线圈都可以提供磁场,因此它的励磁方式可以分为串联励磁和并联励磁两种。 对于串联励磁的混合励磁电机来说,其调速特性与传统的串联励磁直流电机类似,即随着电枢电流的变化,电机的转矩和转速也会相应地变化。但与传统的串联励磁直流电机不同的是,混合励磁电机的转子是永磁体,因此其反电动势随着转速的增加而线性增加。这就需要根据转速来调整电枢电流,以保持电机的转速稳定。 对于并联励磁的混合励磁电机来说,其调速特性与异步电机类似,即其转速随着负载的变化而发生变化,但其效率和功率因数要比异步电机高。在控制上,可以通过控制电机的励磁电流来实现转速的调节。 总的来说,混合励磁电机具有良好的调速特性和率、高功率因数等优点,但其调速和控制方法相对于传统的电机会更加复杂。 混合励磁电机是电励磁同步电机和永磁同步电机的合成,因此,在忽略漏磁和磁饱和的情况下,气隙内的磁链是永磁磁动势产生的磁链和电励磁磁动势产生的磁链的合成。