从宏观角度来看,振动时效使零件塑性变形,减少和平均残余应力,提高材料的变形耐受性,无疑是零件尺寸精度稳定的基本原因。分析了残余应力松弛和零件变形,发现残余应力的存在和不稳定性导致应力松弛和再分配,使零件发生塑性变形。因此,为了消除和减少残余应力,特别是危险的大应力,通常好在热时效法。振动时效也能降低残余应力。零件振动处理后,残余应力通常可以降低到20-30%,有时可以降低到50-60%,还可以降低峰值应力,使应力分布均匀。
除了残余应力值外,决定零件尺寸稳定性的另一个重要因素是松弛刚度或零件抗变形能力。 虽然零件有很大的残馀应力,但由于抗变形能力强,有时不会引起大的变形。 在这方面,振动时效也表现出明显的作用。 振动时效的载荷试验结果表明,振动时效构件的抗变形能力不仅未时效的零件,而且经热时效处理的零件。 振动会强化材料,使零件的尺寸精度稳定。
振动消除应力简称VSR(Vibratory Stress Relief),它是利用一受控振动能量对金属工件进行处理,达到消除工件残余应力的目的。国内外大量的应用实例证明,振动时效对稳定零件的尺寸精度具有良好的作用。然而,对于振动时效稳定尺寸精度的机理,迄今为止尚无系统的、满意的解释。
振动时效技术虽然在、节能、环保等方面有着非常明显的优势,但传统的振动时效技术也就是亚共振技术也确实存在着几十年未能解决的技术难题,无法纳入正式的工艺生产流程,也始终没有受到广泛企业的认可,得到大规模的应用。
亚共振时效方式
由低转速扫描到电机额定转速,寻找共振峰,在亚共振区确定主、附振频率及扫频范围。在亚共振频率进行几十分钟的振动处理。
亚共振技术存在的问题
(1) 对支撑点、激振点、拾振点及方向有严格要求,需要不断的扫频、调整位置。所以由受过培训的人员操作设备,一般的工人即使受过培训也很难掌握这项技术;工件在单件生产时调整相当繁琐,拾振点、支撑点很难调到佳状态,一种工件就需要制订一种工艺;人为地确定需处理共振峰,这对操作者的经验要求也比较高;
(2) 因为是通过扫频的方式寻找共振峰,而电机的转速是有限的,当工件共振频率超出激振器的频率范围时,通过扫描就无法找到工件共振频率,因而无法对工件进行有效的振动处理。国家相关数据统计亚共振技术可处理的工件在机械制造业覆盖面仅为23%。
(3) 有效振型较少,振动时效的应力消除不稳定,应力的消除不能达到佳的结果;
(4) 噪声过大也是难以推广的主要原因。
在21世纪初一种新的振动时效技术在中国出现了,她摒弃了原有振动时效技术攻关方向,辟蹊径,从另外一个全新的角度,去诠释振动时效的价值。突破了原有的技术瓶颈,迎来了振动时效应用的一个全新时代。因为其找频方式与处理频率,被称为频谱谐波技术。频谱谐波技术不再沿用原有的扫频方式,而是通过对工件进行频谱分析找出工件的几十种谐波频率,在这几十种谐波频率中优选出对消除工件残余应力效果佳的五种不同振型的谐波频率进行时效处理,达到多维消除应力提高尺寸精度稳定性的目的。频谱谐波方式不论工件大小、频率刚性高低、材料特性均能找出五种不同振型的谐波峰。不受激振器的转速范围限制,对激振点和拾振点无特殊要求,能够处理亚共振无法处理的高刚性高固有频率工件,能够满足对尺寸精度要求高的工件,振动噪音低,在机械行业的覆盖面已达到近。处理的转速全部在6000RPM以下,也解决了亚共振设备噪音大的问题。