振动时效可以看作是周期动应力下的循环应变,金属材料内部的晶体位错运动导致微观应力增加,从而调整应力稳定元件大小的过程。 在实际加工中,工件的重量、体积和结构形状各不相同。在振动时效前正确设置各工艺参数。工件的主振动频率、辅助振动频率、冲击力、冲击点和支承位置等参数应通过调整得到准确的结果。
在金属的铸造、锻造、焊接、切割和使用过程中,加热冷却和机械变形导致工件内部产生残余应力,使工件不稳定,降低了工件的尺寸稳定性和机械物理性能,导致作业过程中的应力变形和失效,尺寸精度无法。随着振动焊接技术在各行业的应用,可以看出振动时效设备技术不断发展,经济效果日益,应用范围不断扩大。如果能完全适应现代工业社会的动力和环境保护的要求,就会有更广阔的发展空间。
对于振动老化过程中的机理,国内外已进行了大量的研究工作,并取得了以下共识。振动时效是对金属元件施加周期性力(动应力)。在振动时效过程中,应用于金属构件各部分的动态应力与内部残余应力重叠。如果叠加尺寸大于金属零部件的屈服极限,金属零部件的光栅就会滑动,发生微小的塑性变形,达到终残余应力的意图。