随着城市交通的快速发展,车牌识别系统除了在日常停车场管理中起到至关作用,在交通管理、公安安防等领域也得到了广泛应用。车牌识别系统主要采用了计算机图像识别技术,通过扫描图片或视频就可以抓取车牌信息。
在实际应用中,选择合适的模式是非常重要的。传统模式、基于特征的模式和基于统计的模式通常适用于一些简单的场景,如停车场管理等。而对于一些复杂的场景,如高速公路收费等,深度学习模式更具有优势。但是需要注意的是,在实际应用中,深度学习模式需要大量的数据和计算资源支持,因此在资源紧张的情况下,应该根据具体情况进行选择。
一个完好的道闸体系由减速器、电机、传动(或液压)、平衡设备、底盘、制动支架、制动杆等组成。由于道闸体系运用的场所比较特殊,大都都是在室外的。因而,在挑选道闸体系的时候,一般需要注意一下几点:
1.防砸车、砸人功能;
2.识别率是否高;
3.闸杆漂亮易见;
4.内部力矩结构防锈;
5.是否是智能道闸体系;
6.外壳坚固,防水防锈;
7.停电等紧急情况 方便手工操作。
传统停车场的管理模式主要依靠人工收费和监控,存在着人工管理不善、监管难度大等问题。而智能道闸通过安装智能管理系统,实现了监控和管理的网络化、自动化、智能化,做到了实时监控、过闸识别、信息交互等多个方面的可视化,使得停车场的管理变得更加、安全、稳定。通过运用云计算、大数据等技术,实现停车场的数据收集、储存、分析与查询等操作,实现对停车场的管控,停车场的规范化、安全化、智能化。
随着智能道闸应用的不断普及,停车场的数据量也在不断增加,包括停车流量、客户满意度、车牌信息等多种数据类型。这些数据的挖掘和分析,不仅可以提供详细的车辆通行和停车消费等信息,还可以为停车场提供决策支撑,提高停车场的经营效益和管理水平。
智能道闸技术的应用提高了停车场经营效益和管理水平,优化了用户体验,为城市化进程带来了便利,成为停车场行业的“黑马”。当然,随着社会的不断发展,智能道闸技术还面临一系列问题,例如信息安全、应用场景适配等方面的挑战,因此停车场管理者需要逐步完善智能道闸技术的应用,使之更好地服务于用户、满足市场需求。