TSV 互连具有缩短路径和更薄的封装尺⼨等优点,被认为是三维集成的核
术。 TSV 结构如下图所示,在硅板上面有加⼯完成的通孔;在通孔内由内到外
依次为电镀铜柱、绝缘层和阻挡层。绝缘层的作用是将硅板和填充的导电 材料
之间进⾏隔离绝缘,材料通常选用⼆氧化硅。由于铜原⼦在 TSV 制 造⼯艺流
程中可能会穿透⼆氧化硅绝缘层,导致封装器件产品性能的下降 甚⾄失效,⼀
般用化学稳定性较⾼的⾦属材料在电镀铜和绝缘层之间加⼯ 阻挡层。后是用
于信号导通的电镀铜。
在不同电流密度下的分阶段电沉积实验展示了动态的硅通孔
(TSV) 填充过程。通过控制外加电流密度,可以获得对应于
TSV填充结果的不同形貌。具体来说,低电流密度 (4 mA/
cm 2 ) 会导致接缝缺陷填充,中等电流密度 (7 mA/cm 2 ) 会导
致⽆缺陷填充,⽽⾼电流密度 (10 mA/cm 2 )) 导致空洞缺陷填
充。填充系数分析表明,电流密度对TSV填充模型的影响是
由添加剂和铜离⼦的消耗和扩散的耦合效应触发的。此外,
镀层的形态演变表明局部沉积速率受镀层⼏何特征的影响。
硅通孔 (TSV) 是⼀种很有前途的三维 (3D) 封装技术,具有
⾼性能、减小封装体积、低功耗和多功能等优点。在 TSV ⼯
艺中,通常使用铜电化学沉积 (ECD) 进⾏的通孔填充步骤占
总成本的近 40% 。作为 TSV 的核⼼和关键技术,以小化⼯
艺时间和成本的⽆缺陷填充备受关注。
目
深硅刻蚀设备
通常情况下,制造硅通孔(经常穿透多层⾦属和绝缘材料)采用深反 应离⼦刻蚀
技术(DRIE),常用的深硅刻蚀技术又称为“Bosch(博⽒)” ⼯艺,有初发明该项
技术的公司命名。 如下图所示,⼀个标准Bosch⼯艺循环包括选择性刻蚀和钝
化两个步 骤,其中选择性刻蚀过程采用的是SF6和O2两种⽓体,钝化过程采用
的是 C4F8⽓体。在Bosch⼯艺过程中,利用SF6等离⼦体刻蚀硅衬底,接
着利用C4F8等离⼦体作为钝化物沉积在硅衬底上,在这些⽓体中加⼊O2 等离
⼦体,能够有效控制刻蚀速率与选择性。因此,在Bosch刻蚀过程中 很自然地
形成了⻉壳状的刻蚀侧壁。
封装之TSV及TGV技术初探
其中,玻璃诱导刻蚀法如下:
1) 使用皮秒激光在玻璃上产⽣变性区域;2)将激光处理过的玻璃放在 氢氟酸溶液
中进⾏刻蚀。
国内外研究现状
2011年,瑞⼠的微纳系统研究部提出了如下图所示的基于TSV技术圆片级 真空
封装⽅案。该⽅案由TSV封帽与器件层两部分构成,TSV封帽垂直导 通柱是填
充在硅通孔中的铜柱。器件层上制作有⾦锡电极与铜柱相连,从 ⽽把电信号从
空腔内部的引到空腔外部,后通过硅-硅直接键合实现密 封。该⽅案⽓密性
很好,但是TSV封帽制作⼯艺复杂,热应⼒⼤(铜柱与 硅热失配⼤),且硅硅键
合对键合表面要求质量很⾼,⼀般加⼯过的硅片 很难达到此要求。
嵌⼊式玻璃扇出与集成天线封装
玻璃通孔还可以在玻璃上制作空腔,进⽽为芯片的封装提供⼀种嵌⼊ 式玻璃扇
出(eGFO)的新⽅案。2017年乔治亚理⼯率先实现了用于⾼I/O 密度和⾼频多芯
片集成的玻璃面板扇出封装。该技术在70um厚、⼤小为 300mm*300mm的玻璃
面板上完成了26个芯片的扇出封装,并有效的控 制芯片的偏移和翘曲。2020年
云天半导体采用嵌⼊式玻璃扇出技术开了 77GHz汽⻋雷达芯片的封装,并在此
基础上提出了⼀种⾼性能的天线封装 (AiP)⽅案。