铝及铝合金的理化性能及焊接特点
1 易氧化
铝和氧的亲和力很强。在常温下,铝表面就能被氧化成厚度约0.1~0.2 m致密的AL2O3薄膜。虽然这层氧化铝薄膜比较致密,能防止金属的继续氧化,对自然防腐有利,但它给焊接带来了困难,这是由于氧化铝的熔点(2050℃)远远超过了铝的熔点(600℃左右),比重约为铝的1.4倍。在焊接过程中,会阻碍金属之间的熔合,易形成夹渣,而且氧化铝薄膜还吸附了较多的水份,焊接时会促使焊缝生成气孔。
2 较大的导热系数和比热容
铝的导热系数约为钢的四倍,因此,焊接铝材管时,比钢管焊接要消耗更多的热量,为得到的焊接接头,必需采用能量集中,功率大的热源。
3 易形成氢气孔
铝及铝合金的焊接气孔主要氢气孔。铝在液态时能大量吸收和溶解氢,在熔融状态下溶解度为0.0069ml/g,而在高温凝固状态下为0.00036 ml/g,前后相差近20倍。铝的导热系数很大,在相同的焊接工艺条件下,其冷却速度为钢的4~7倍,使金属结晶加快,焊接熔池在快速冷却过程中,氢的溶解度急剧下降,此时析出大量过饱和气体,氢气来不及析出在焊缝金属中形成气孔。因此,在焊接铝材时,焊缝产生气孔的倾向很大。
5A02 飞机油箱与导管,焊丝,铆钉,船舶结构件。
5A03 中等强度焊接结构,冷冲压零件,焊接容器,焊丝,可用来代替5A02合金。
5A05 焊接结构件,飞机蒙皮骨架。
5A06 焊接结构,冷模锻零件,焊拉容器受力零件,飞机蒙皮骨部件。
5A12 焊接结构件,甲板。
焊接工艺
1焊接材料的选择
焊丝原则上选择与母材成分相同的铝及铝合金焊丝或板条。氩气纯度>99.95%,尽量选用大直径焊丝。在Al-Mg系铝合金的弧焊中,通常都是推荐使用CB-AMr2、CB-AMr3、CB-AMr6、CB- AMr61、CB-AMr63、1557、1577焊条,对Al-Cu系铝合金则推荐用01201和01217。
2 组对与点固焊
由于铝及铝合金管导热快、熔池结晶快,所以.组对时不留间隙、钝边,应避免强制进行,以减少焊接后产生较大的残余应力,定位焊缝长度10-15mm为易。定位焊位置在管的7点、9点、12点处。定位焊焊缝常做为正式焊缝保留,因此发现问题应及时处理。焊前对定位焊表面黑粉、氧化膜进行清除,并将两端修成缓坡型。焊件不需要预热.焊前在试板上试焊,当确认无气孔后再进行正式焊接。采用高频引弧,起弧点应越过中心线20mm左右,并停留不动约2-3秒。然后在焊透的情况下,采用大电流、快速焊。焊丝不摆动,焊丝端部不应离开氩气保护区。如离开氩气保护区.焊丝端部应剪掉。焊丝与焊缝表面的夹角宜在15O右。焊枪与焊缝表面的夹角宜保持在80O~90O之间。为氩气保护区和增强保护效果,可采用大直径焊枪瓷嘴,加大焊枪氩气流量。当喷嘴上有明显阻碍氩气气流流通的飞溅物附着时。将飞溅物清除或更换喷嘴。当钨极端部出现污染,形状不规则等现象时.修整或更换。钨极不宜伸出喷嘴外。焊接温度的控制主要是焊接速度和焊接电流大小的控制。试验结果表明,大电流、快速焊能有效防止气孔的产生。这主要是由于在焊接过程中以较快速度焊透焊缝,熔化金属受热时间短,吸收气体的机会少。收弧时,注意填满弧坑,缩小溶池,避免产生缩孔,终点的结合处应焊过20~30mm。停弧后,要延迟停气6秒。可旋转的铝及铝合金管对接平焊时.焊炬应处于稍带上坡焊位置。这样有利于焊透。厚壁管子底层焊时。可不填加焊丝。但以后的焊层需加焊丝。
铝合金焊接保护措施
1、焊前用化学+机械的方法清除工件坡口及周围部分和焊丝表面的氧化物,顺序是先化学清洗,后机械打磨;
2、焊接过程中要采用合格的保护气体进行保护;
3、在气焊时,采用熔剂,在焊接过程中不断用焊丝挑破熔池表面的氧化膜。
焊接难点
(1)极易氧化。在空气中,铝容易同氧化合,生成致密的三氧化二铝薄膜(厚度约0.1-0.2μm),熔点高(约2050℃),远远超过铝及铝合金的熔点(约600℃左右)。氧化铝的密度3.95-4.10g/cm3,约为铝的1.4倍,氧化铝薄膜的表面易吸附水分,焊接时,它阻碍基本金属的熔合,极易形成气孔、夹渣、未熔合等缺陷,引起焊缝性能下降。
(2)易产生气孔。铝和铝合金焊接时产生气孔的主要原因是氢,由于液态铝可溶解大量的氢,而固态铝几乎不溶解氢,因此当熔池温度快速冷却与凝固时,氢来不及逸出,容易在焊缝中聚集形成气孔。氢气孔难于完全避免,氢的来源很多,有电弧焊气氛中的氢,铝板、焊丝表面氧化膜吸附空气中的水分等。实践,即使氩气按GB/T4842标准要求,纯度达到99.99% 以上,但当水分含量达到20ppm时,也会出现大量的致密气孔,当空气相对湿度超过80%时,如果不采取加热等措施,焊缝就会明显出现气孔。同时,采用小电流慢速焊,加大焊缝冷却时间,并利用焊丝电弧进行熔池搅动,可以较好的帮助气体排出熔池。
(3)焊缝变形和形成裂纹倾向大。铝的线膨胀系数和结晶收缩率约比钢大两倍,易产生较大的焊接变形的内应力,对刚性较大的结构将促使热裂纹的产生。
(4)铝的导热系数大(纯铝0.538卡/Cm.s.℃)。约为钢的4倍,因此,焊接铝和铝合金时,比焊钢要消耗更多的热量。
(5)合金元素的蒸发的烧损。铝合金中含有低沸点的元素(如镁、锌、锰等),在高温电弧作用下,极易蒸发烧损,从而改变焊缝金属的化学成分,使焊缝性能下降。
(6)高温强度和塑性低。高温时铝的强度和塑性很低,破坏了焊缝金属的成形,有时还容易造成焊缝金属塌落和焊穿现象。
(7)无色彩变化。铝及铝合金从固态转为液态时,无明显的颜色变化,使操作者难以掌握加热温度
铝合金是以铝为基体元素和加入一种或多种合金元素组成的合金。一般采用交直流方波钨极氩弧焊和脉冲MIG焊进行焊接,脉冲MIG焊又分为一脉一滴脉冲MIG焊和高速脉冲MIG焊。脉冲MIG焊采用焊丝分为:纯铝焊丝301;铝硅焊丝4043;铝镁焊丝5356;保护气采用高纯度氩气:99.99%Ar。
铝合金具有重量轻、抗腐蚀、易成型等优点;随着新型硬铝、超硬铝等材料的出现使得这类材料的性能不断提高,因而在航空、航天、高速列车、高速舰艇、汽车等工业制造领域得到了越来越广泛的应用。
由于铝及其合金化学活泼性很强和自身的属性,使得在焊接时较困难,对焊缝的质量控制要求较高,主要为:
1、铝及其合金,表面易形成氧化膜:Al2O3或MgO,且多具有难熔性质(Al2O3熔点约为2050℃,MgO熔点约为2500℃)。
2、氧化膜(Al2O3或MgO)密度同铝的密度极其接近,所以也容易成为焊缝金属的夹杂物。
3、氧化膜(MgO)可以吸收较多的水分而形成焊缝气孔。
4、铝及其合金导热性强,焊接时容易造成不熔合现象。
5、铝及其合金的线膨胀系数大约为碳钢的2倍;导热性又强,比钢约大一倍多;凝固时的体积收缩率较大,约为6.5%,而铁为3.5%。焊接后容易产生变形、热裂纹以及热影响区的软化、强度降低等问题。
针对以上问题,采用四川玛瑞焊业发展有限公司高速脉冲MIG焊机可以很好的解决以上问题,同时获得的焊接质量。
高速脉冲MIG焊机焊接时电弧过度脉冲频率为3kHz—5kHz,自动形成压缩电弧,电弧电流密度大,从而使焊接时:
① 电弧更集中,小电流焊接时可以代替TIG焊
② 穿透力更强,不易造成未熔合
③ 搅拌力更大和更深,不易造成气孔和夹渣
④ 高速脉冲对Al2O3破除效果好
⑤ 焊接速度更快,热影响区小、变形小
另外,还得注意气孔的形成原因和焊接参数匹配。焊缝气孔的出现一般多为氢气孔。氢气孔的形成主要为:
1、弧柱气氛中的水分: 弧柱空间总是或多或少存在一定数量的水分,尤其在潮湿季节或湿度大的地区进行焊接时,由弧柱气氛中水分分解而来的氢,溶入过热的熔融金属中,可成为焊缝气孔的原因。
2、焊丝、母材表面氧化膜的吸附水份:铝合金焊丝、母材的表面氧化膜中含有不致密的MgO或Al2O3,焊接时,在熔透不足的情况下,母材坡口端部未除净的氧化膜中所吸附的水分,常常是产生焊缝气孔的主要原因。
3、保护气体不纯:保护气体多为氩气,氩气中含有水份或杂质,焊接时造成焊缝气孔。
一般说来,铝及其合金焊接线能量越大,焊缝性能下降的趋势也越大。对于熔合区,除了防止晶粒粗化,还可能因晶界液化而产生显微裂纹。所以,熔合区的变化主要是恶化塑性。因而焊接工艺参数应选用既不造成未熔合又不过烧的合理参数才能确保铝及其合金的焊接质量。
焊接材料
(1)焊丝 铝及铝合金焊丝的选用除考虑良好的焊接工艺性能外,按容器要求应使对接接头的抗拉强度、塑性(通过弯曲试验)达到规定要求,对含镁量超过3%的铝镁合金应满足冲击韧性的要求,对有耐蚀要求的容器,焊接接头的耐蚀性还应达到或接近母材的水平。因而焊丝的选用主要按照下列原则:
1)纯铝焊丝的纯度一般不低于母材;
2)铝合金焊丝的化学成分一般与母材相应或相近;
3)铝合金焊丝中的耐蚀元素(镁、锰、硅等)的含量一般不低于母材;
4)异种铝材焊接时应按耐蚀较高、强度高的母材选择焊丝;
5)不要求耐蚀性的高强度铝合金(热处理强化铝合金)可采用异种成分的焊丝,如抗裂性好的铝硅合金焊丝SAlSi一1等(留意强度可能低于母材)。
(2)保护气体 保护气体为氩气、氦气或其混合气。交流加高频TIG焊时,采用大于99.9%纯氩气,直流正极性焊接宜用氦气。MIG焊时,板厚<25 mm时宜用氩气;板厚25 mm~50 mm时氩气中宜添加10%~35%的氦气;板厚50mm-75mm时氩气中宜添加l0%~35%或50%的氦气;当板厚>75 mm时推荐采用添加50%~75%氦气的氩气。氩气应符合GB/T 4842?995《纯氩》的要求。氩气瓶压低于0.5 MPa后压力不足,不能使用。
(3)钨极 氩弧焊用的钨极材料有纯钨、钍钨、铈钨、锆钨四种。纯钨极的熔点和沸点高,不易熔化挥发,电极烧损及尖真个污染较少,但电子发射能力较差。在纯钨中加进1%~2%氧化钍的电极为钍钨极,电子发射能力强,答应的电流密度高,电弧燃烧较稳定,但钍元素具有一定的,使用时应采取适当的防护措施。在纯钨中加进1.8%~2.2%的氧化铈(杂质≤0.1%)的电极为铈钨极。铈钨极电子逸出功低,化学稳定性高,答应电流密度大,无,是目前普遍采用的电极。锆钨极可防止电极污染基体金属,易保持半球形,适用于交流焊接。
(4)焊剂 气焊用焊剂为钾、钠、锂、钙等元素的氯化物和氟化物,可往除氧化膜。
1070纯铝焊丝,铝含量≥99.5%,有的抗腐蚀性能,很高的导热与导电性能,以及的可加工性能。对经阳极化处理 的材料,需要配色时十分理想,推荐用于焊接1000系列铝合金。 典型化学成份:Si≤0.03、Cu≤0.002、Zn≤0.013、Fe≤0.18 、Mn≤0.003,AL余量用途广泛用于铁路机车、电力、化学、食 品等行业。 执行GB10858-89标准铝及铝合金焊丝广泛应用于铝及铝合金氩弧焊及氧 -乙炔气焊时作填充材料。 焊丝的选择,主要根据母材的种类,对接头的抗裂性能、力学性能及抗腐蚀性能等方面的要求综合考虑
铝材具有的物理特性和力学性能,其密度低、强度高、热导率高、电导率高,耐蚀能力强。铝材广泛用于容器、机械、电力、化工、航空、航天等焊接结构的产品上。
(一)铝材的分类及牌号表示方法
1. 铝材的分类
(1)按有无合金成分,铝材分为纯铝及铝合金。铝合金按合金系列又分为Al-Mn合金、Al-Cu合金、Al-Si合金和Al-Mg合金等。
(2)按压力加工能力,可分为变形铝和非变形铝(例如:铸铝)。
(3)按能否热处理强化,铝合金又分为非热处理强化铝和热处理强化铝。铝没有同素异构体,纯铝、铝锰合金、铝镁合金等不可能通过热处理相变来进步强度。但是,铝铜和铝镁硅等合金可通过固溶时效析出强化相进步强度,称为可热处理强化铝。不能通过固溶时效析出强化相进步强度的称为不可热处理强化铝。
2. 牌号表示方法和状态代号
(1)四位数字体系牌号命名方法 1997年1月1号,我国开始实施GB/T16474?996《变形铝和铝合号表示方法》标准。新的牌号表示方法采用变形铝和铝合金国际牌号注册组织推荐的国际四位数字体系牌号命名方法,例如产业纯铝有1070、1060等,Al-Mn合金有3003等,Al-Mg合金有5052、5086等。
(2)四位字符体系牌号命名方法 1997年1月1号前,我国采用前苏联的牌号表示方法。一些老牌号的铝及铝合金化学成分与国际四位数字体系牌号不完全吻合,不能采用国际四位数字体系牌号代替,为保存国内现有的非国际四位数字体系牌号,不得不采用四位字符体系牌号命名方法,以便逐步与国际接轨。例如:老牌号LF21的化学成分与国际四位数字体系牌号3003不完全吻合,于是,四位字符体系表示的牌号为3A21。
四位数字体系和四位字符体系牌号个数字表示铝及铝合金的种别,其含义如下:
1)1XXX系列枣产业纯铝;
2)2XXX系列枣Al-Cu、Al-Cu-Mn合金,;
3)3XXX系列枣Al-Mn合金;
4)4XXX系列枣Al-Si合金;
5)5XXX系列枣Al-Mg合金;
6)6XXX系列枣Al-Mg-Si合金;
7)7XXX系列枣Al-Mg-Si-Cu合金;
8)8XXX系列枣其它。
铝铝焊丝又称铝铝药芯焊丝,因此种焊丝可以把铝材和铝材焊接起来而得名。它不同于普通铝焊丝要用氩弧焊机焊接,也不同于铝硅焊丝4047需要配合钎剂才能焊接,而只需通过火焰或感应直接可以钎焊焊接(因为自带钎剂,所以不需要另加钎剂)。
此焊丝焊接出来的工件的抗拉抗剪强度(接头牢固性不低于基材)、导电性能、耐腐蚀性能都较好,而且质量稳定,此焊丝的钎剂成分和性能见嵩峰机电。
与使用氩弧焊机用铝焊丝焊接相比,用铝铝焊丝工人操作简单、焊接设备简单、焊接不会使基材的结构发生变化
容器规范采用的铝及铝合金 要求制造容器的材料具有良好的成形性和焊接性,JB/T4734-2002《铝制焊接容器》中采用的铝及铝合金有:
产业纯铝 1A85、1050A、1060和1200。
Al-Cu合金 2014。
Al-Mn合金 3003和3004。
Al-Mg合金 5A02、5A03、5A05、5052、5052、5058和5086。
Al-Mg-Si合金 6A02、6061和6063。
典型牌号铝及铝合金化学成分和力学性能,可查阅相关标准。
铝及铝合金的焊接工艺
铝及铝合金的焊接特点
(1) 铝在空气中及焊接时极易氧化,天生的氧化铝(Al2O3)熔点高、非常稳定,不易往除。阻碍母材的熔化和熔合,氧化膜的比重大,不易浮出表面,易天生夹渣、未熔合、未焊透等缺欠。铝材的表面氧化膜和吸附大量的水分,易使焊缝产生气孔。焊接前应采用化学或机械方法进行严格表面清理,清除其表面氧化膜。在焊接过程加强保护,防止其氧化。钨极氩弧焊时,选用交流电源,通过“阴极清理”作用,往除氧化膜。气焊时,采用往除氧化膜的焊剂。在厚板焊接时,可加大焊接热量,例如,氦弧热量大,利用氦气或氩氦混合气体保护,或者采用大规范的熔化极气体保护焊,在直流正接情况下,可不需要“阴极清理”。
(2)铝及铝合金的热导率和比热容均约为碳素钢和低合金钢的两倍多。铝的热导率则是奥氏体不锈钢的十几倍。在焊接过程中,大量的热量能被迅速传导到基体金属内部,因而焊接铝及铝合金时,能量除消耗于熔化金属熔池外,还要有更多的热量无谓消耗于金属其他部位,这种无用能量的消耗要比钢的焊接更为明显,为了获得的焊接接头,应当尽量采用能量集中、功率大的能源,有时也可采用预热等工艺措施。
(3)铝及铝合金的线膨胀系数约为碳素钢和低合金钢的两倍。铝凝固时的体积收缩率较大,焊件的变形和应力较大,因此,需采取预防焊接变形的措施。铝焊接熔池凝固时轻易产生缩孔、缩松、热裂纹及较高的内应力。生产中可采用调整焊丝成分与焊接工艺的措施防止热裂纹的产生。在耐蚀性答应的情况下,可采用铝硅合金焊丝焊接除铝镁合金之外的铝合金。在铝硅合金中含硅0.5%时热裂倾向较大,随着硅含量增加,合金结晶温度范围变小,活动性明显进步,收缩率下降,热裂倾向也相应减小。根据生产经验,当含硅5%~6%时可不产生热裂,因而采用SAlSi条(硅含量4.5%~6%)焊丝会有更好的抗裂性。
(4)铝对光、热的反射能力较强,固、液转态时,没有明显的光彩变化,焊接操纵时判定难。高温铝强度很低,支撑熔池困难,轻易焊穿。
(5)铝及铝合金在液态能溶解大量的氢,固态几乎不溶解氢。在焊接熔池凝固和快速冷却的过程中,氢来不及溢出,极易形成氢气孔。弧柱气氛中的水分、焊接材料及母材表面氧化膜吸附的水分,都是焊缝中氢气的重要来源。因此,对氢的来源要严格控制,以防止气孔的形成。
(6)合金元素易蒸发、烧损,使焊缝性能下降。
(7)母材基体金属如为变形强化或固溶时效强化时,焊接热会使热影响区的强度下降。
(8) 铝为面心立方晶格,没有同素异构体,加热与冷却过程中没有相变,焊缝晶粒易粗大,不能通过相变来细化晶粒。
铝及铝合金在现代工程技术所用的各种材料中占有举足轻重的地位,它在世界年产量仅次于钢铁而居第二位,在有色金属中则居位。如果说铝合金初是在航空工业中崭露头角的话,那么近几十年来,除航空工业外,在航天、汽车、船舶、桥梁、机械制造、电工、化学工业及低温装置中已大量应用铝及铝合金,以制造各种部件、油箱、耐蚀容器及导线等。目前铝合金焊接结构中应用广的是防锈铝合金,即铝镁合金和铝锰合金。
▷保护气体的选择◁
焊接时所用的保护气体有惰性气体氩气(Ar)和氦气(He),生产上普遍使用氩气。用于焊接铝及铝合金的氩气满足下列纯度(体积分数)要求:氩气大于99.99%,氦气小于0.04%,氧气小于0.03%,水的质量分数小于0.07%。目前国内生产的氩气,其纯度一般能达到此要求,故在使用前不需再进行提纯处理。
▷钨电极的选用◁
氩弧焊用的钨极材料有纯钨、钍钨、铈钨、锆钨四种。纯钨极的熔点和沸点高,不容易熔化挥发,但电子发射能力比钍钨、铈钨要差。在纯钨中加入质量分数为1.0%~2.0%的氧化钍(Tho)电极称为钍钨极。它的电子发射能力强,允许的电流密度高,电弧燃烧稳定。
▷溶剂的选择◁
在气焊、碳弧焊过程中,熔化的金属表面极易氧化而形成氧化膜,为焊接质量,用熔剂去除氧化膜及其他杂质。气焊、碳弧焊用的熔剂是各种钾、钠、锂、钙等元素的氯化物和氟化物粉末的混合物。
▷焊丝的选用◁
在铝合金材料的焊接过程中,铝合金用焊丝的选用至关重要,选取前应该了解以下内容:
•是否所有的铝合金材料都可用作焊接填充合金?
•是否所有的铝合金都可以焊接?
•应避免发生的缺陷有哪些?
•如何选择焊接填充合金?
•选择时应当考虑的标准是什么?
▷铝合金系列需要了解◁
选择什么样的焊丝?
一种母材可以用多种铝合金焊材完成焊接 ,如5083-5083的焊接:可用 5356,5183,5556 等焊丝。但是每一种焊丝得到的焊接接头可能只能在某一个性能方面是佳的。选择佳的焊丝时,主要应考虑焊接件的终使用性能。整体来说,主要考察以下几个性能指标:
总之,选择铝合金焊丝过程中,只有在对铝件焊接及其应用中的许多相关变量进行了充分分析后,才能选择出合适的合金填料。