工业相机与普通相机(DSC)的区别
1、工业相机的性能稳定可靠易于安装,相机结构紧凑结实不易损坏,连续工作时间长,可在较差的环境下使用,一般的数码相机是做不到这些的。例如:让民用数码相机一天工作24小时或连续工作几天肯定会受不了的。
2、工业相机的快门时间非常短,可以抓拍高速运动的物体。 例如,把名片贴在电风扇扇叶上,以大速度旋转,设置合适的快门时间,用工业相机抓拍一张图像,仍能够清晰辨别名片上的字体。用普通的相机来抓拍,是不可能达到同样效果的。
3、工业相机的图像传感器是逐行扫描的,而普通的相机的图像传感器是隔行扫描的, 逐行扫描的图像传感器生产工艺比较复杂,成品率低,出货量少,世界上只有少数公司能够提供这类产品,例如Dalsa、Sony,而且价格昂贵。
4、工业相机的帧率远遥普通相机。 工业相机每秒可以拍摄十幅到几百幅图片,而普通相机只能拍摄2-3幅图像,相差较大。
5、工业相机输出的是裸数据(raw data),其光谱范围也往往比较宽,比较适合入行的图像处理算法,例如机器视觉(Machine Vision)应用。而普通相机拍摄的图片,其光谱范围只适合人眼视觉,并且经过了mjpeg压缩,图像质量较差,不利于分析处理。
6、 现在我公司自主研发的MV系列USB接口的工业数字相机及1394接口的工业数字相机已广泛投入市场且能够满足大部分客户的需求,产品集图像采集、A/D转换于一体,相对模拟相机先拍摄再用图像采集卡转换来说图像损失减少,使用方便便于携带,拥有丰富的二次开发包,重要的是同等性能下相对于模拟相机来说工业数字相机的成本非常低。
7、工业相机(Industrial Camera)相对普通相机(DSC)来说价格较贵。 以上仅为对工业相机的一点见解,不周之处还待探讨。
工业相机是机器视觉系统中的一个关键组件,其本质的功能就是将光信号转变成为有序的电信号。选择合适的相机也是机器视觉系统设计中的重要环节,相机的不仅是直接决定所采集到的图像分辨率、图像质量等,同时也与整个系统的运行模式直接相关。
工业主要参数
1. 分辨率(Resolution):相机每次采集图像的像素点数(Pixels),对于数字工业相机机一般是直接与光电传感器的像元数对应的,对于模拟相机机则是取决于视频制式,PAL制为768*576,NTSC制为640*480。
2. 像素深度(Pixel Depth):即每像素数据的位数,一般常用的是8Bit,对于数字工业相机机一般还会有10Bit、12Bit等。
3. 大帧率(Frame Rate)/行频(Line Rate):相机机采集传输图像的速率,对于面阵相机机一般为每秒采集的帧数(Frames/Sec.),对于线阵相机机为每秒采集的行数(Hz)。
4. 曝光方式(Exposure)和快门速度(Shutter):对于线阵相机机都是逐行曝光的方式,可以选择固定行频和外触发同步的采集方式,曝光时间可以 与行周期一致,也可以设定一个固定的时间;面阵工业相机有帧曝光、场曝光和滚动行曝光等几种常见方式,数字工业相机机一般都提供外触发采图的功能。快门速度一般可到10微秒,高速工业相机还可以更快。
5. 像元尺寸(Pixel Size):像元大小和像元数(分辨率)共同决定了相机机靶面的大小。目前数字工业相机像元尺寸一般为3μm-10μm,一般像元尺寸越小,制造难度越大,图像质量也越不容易提高。
6. 光谱响应特性(Spectral Range):是指该像元传感器对不同光波的敏感特性,一般响应范围是350nm-1000nm,一些相机机在靶面前加了一个滤镜,滤除红外光线,如果系统需要对红外感光时可去掉该滤镜。
防爆相机光学镜头一般称为摄像镜头或摄影镜头,简称镜头,其功能就是光学成像。镜头是机器视觉系统中的重要组件,对成像质量有着关键性的作用,它对成像质量的几个主要指标都有影响,包括:分辨率、对比度、景深及各种像差。镜头不仅种类繁多,而且质量差异也非常大,但一般用户在进行系统设计时往往对镜头的选择重视不够,导致不能得到理想的图像,甚至导致系统开发失败。本文的目的是通过对各种常见镜头的分类及主要参数介绍,总结各种因素之间的相互关系,使读者掌握机器视觉系统中镜头的选用技巧。
工业相机焦距分类
根据焦距能否调节,可分为定焦距镜头和变焦距镜头两大类。依据焦距的长短,定焦距镜头又可分为鱼眼镜头、短焦镜头、标准镜头、长焦镜头四大类。需要注意的是焦距的长短划分并不是以焦距的值为首要标准,而是以像角的大小为主要区分依据,所以当靶面的大小不等时,其标准镜头的焦距大小也不同。变焦镜头上都有变焦环,调节该环可以使镜头的焦距值在预定范围内灵活改变。变焦距镜头长焦距值和短焦距值的比值称为该镜头的变焦倍率。变焦镜头有可分为手动变焦和电动变焦两大类。
变焦镜头由于具有可连续改变焦距值的特点,在需要经常改变摄影视场的情况下非常方便使用,所以在摄影领域应用非常广泛。但由于变焦距镜头的透镜片数多、结构复杂,所以大相对孔径不能做得太大,致使图像亮度较低、图像质量变差,同时在设计中也很难针对各种焦距、各种调焦距离做像差校正,所以其成像质量无法和同档次的定焦距镜头相比。
变焦距镜头 定焦距镜头
手动变焦 电动变焦 鱼眼镜头 短焦镜头 标准镜头 长焦镜头
实际中常用的镜头的焦距是从4毫米到300毫米的范围内有很多的等级,如何选择合适焦距的镜头是在机器视觉系统设计时要考虑的一个主要问题。光学镜头的成像规律可以根据两个基本成像公式牛顿公式和高斯公式来推导,对于机器视觉系统的常见设计模型,我们一般是根据成像的放大率和物距这两个条件来选择合适焦距的镜头的,在此给出一组实用的计算公式:
放大率:m=h’/h=L’/L 物距:L = f(1+1/m)
像距:L’= f(1+m) 焦距:f = L/(1+1/m)
物高:h = h’/m = h’(L-f)/f 像高:h’ = mh = h(L’-f)/f
工业相机镜头接口类型
镜头和摄像机之间的接口有许多不同的类型,工业摄像机常用的包括C接口、CS接口、F接口、V接口、T2接口、徕卡接口、M42接口、M50接口等。接口类型的不同和镜头性能及质量并无直接关系,只是接口方式的不同,一般可以也找到各种常用接口之间的转接口。
C接口和CS接口是工业摄像机常见的国际标准接口,为1英寸-32UN英制螺纹连接口,C型接口和CS型接口的螺纹连接是一样的,区别在于C型接口的后截距为17.5mm,CS型接口的后截距为12.5mm。所以CS型接口的摄像机可以和C口及CS口的镜头连接使用,只是使用C口镜头时需要加一个5mm的接圈;C型接口的摄像机不能用CS口的镜头。
F接口镜头是尼康镜头的接口标准,所以又称尼康口,也是工业摄像机中常用的类型,一般摄像机靶面大于1英寸时需用F口的镜头。
V接口镜头是的镜头品牌施奈德镜头所主要使用的标准,一般也用于摄像机靶面较大或特殊用途的镜头。
工业相机特殊用途的镜头分类
显微镜头(Micro),一般是指成像比例大于10:1的拍摄系统所用,但由于现在的摄像机的像元尺寸已经做到3微米以内,所以一般成像比例大于2:1时也会选用显微镜头。
微距镜头(Macro),一般是指成像比例为2:1~1:4的范围内的特殊设计的镜头。在对图像质量要求不是很高的情况下,一般可采用在镜头和摄像机之间加近摄接圈的方式或在镜头前加近拍镜的方式达到放大成像的效果。
远心镜头(Telecentric),主要是为纠正传统镜头的视差而特殊设计的镜头,它可以在一定的物距范围内,使得到的图像放大倍率不会随物距的变化而变化,这对被测物不在同一物面上的情况是非常重要的应用。
紫外镜头(Ultraviolet)和红外镜头(Infrared),一般镜头是针对可见光范围内的使用设计的,由于同一光学系统对不同波长的光线折射率的不同,导致同一点发出的不同波长的光成像时不能会聚成一点,产生色差。常用镜头的消色差设计也是针对可见光范围的,紫外镜头和红外镜头即是针对紫外线和红外线进行设计的镜头。
工业防爆相机光圈调节
一般光圈都可以调节,从而有手动光圈(manual iris)和自动光圈(autoiris)之分。
手动光圈工业镜头是的简单的工业镜头,适用于光照条件相对稳定的条件下,手动光圈由数片金属薄片构成。光通量靠镜头外径上的—个环调节。旋转此圈可使光圈收小或放大。在照明条件变化大的环境中或不是用来监视某个固定目标,应采用自动光圈工业镜头,比如在户外或人工照明经常开关的地方,自动光圈镜头的光圈的动作由马达驱动,马达受控于摄像机的视频信号。
自动光圈工业镜头又有两类:一类是将一个视频信号及电源从摄像机输送到透镜来控制镜头上的光圈,镜头本身包含放大器电路,用以将摄像头传来的视频幅度信号转换成对光圈马达的控制,这称为视频(VIDEO)驱动型;另一类则利用摄像机上的直流电压来直接控制光圈,称为直流(DC)驱动型,这种镜头只包含电流计式光圈马达,要求摄像头内有放大器电路。
对于各类自动光圈工业镜头,通常还有两项可调整旋钮,一是ALC调节 (测光调节),有以峰值测光和根据目标发光条件平均测光两种选择, 一般取平均测光档;另一个是LEVEL调节(灵敏度),可将输出图像变得明亮或者暗淡。
防爆数码相机光敏元件:
目前主要有两种类型的CCD光敏元件,分别是线性CCD和矩阵性CCD。线性CCD用于高分辨率的静态照相机,它每次只拍摄图象的一条线,这与平板扫描仪扫描照片的方法相同。这种CCD精度高,速度慢,无法用来拍摄移动的物体,也无法使用闪光灯。因此在很多场合不适用,不在今天我们讨论的范围里。另一种是矩阵式CCD,它的每一个光敏元件代表图象中的一个像素,当快门打开时,整个图象一次同时曝光。通常矩阵式CCD用来处理色彩的方法有两种。一种是将彩色滤镜嵌在CCD矩阵中,相近的像素使用不同颜色的滤镜。典型的有G-R-G-B和C-Y-G-M两种排列方式。这两种排列方式成像的原理都是一样的。在记录照片的过程中,防爆相机内部的微处理器从每个像素获得信号,将相邻的四个点合成为一个像素点。该方法允许瞬间曝光,微处理器能运算地非常快。这就是大多数数码相机CCD的成像原理。因为不是同点合成,其中包含着数学计算,因此这种CCD大的缺陷是所产生的图象总是无法达到如刀刻般的锐利。另一种处理方法是使用三棱镜,他将从镜头射入的光分成三束,每束光都由不同的内置光栅来过滤出某一种三原色,然后使用三块CCD分别感光。这些图象再合成出一个高分辨率、色彩的图象。如300万像素的相机就是由三块300万像素的CCD来感光。也就是可以做到同点合成,因此拍摄的照片清晰度相当高。该方法的主要困难在于其中包含的数据太多。在你照下一张照片前,将存储在相机的缓冲区内的数据清除并存盘。因此这类相机对其他部件的要求非常高,其价格自然也非常昂贵。