西门子安全模块,顾名思义安全回路上做保护。Sitic 300 CPU带F的CPU才能挂安全模块,安全模块是双通道的,2个触点同时导通,不能有先后时间差。以前老设备都会用安全继电器,靠硬接线,这样浪费空间,时间,精力,不精简。如果用Prosafe module 就可以在Step7软件中通过的安全模块软件包来编程,非常的方便哦!安全模块是双通道,一个模块一般会有2个环路,4个通道。一个环路有2个通道,这两个通道同时导通,否则就会报错。与早的安全继电器是差不错的,只是300安全模块打破了传统硬接下,还能编程,这个是亮点。
回收西门子模块是如何定价的,很多客户会问我们,为什么出厂价那么高的产品到你们这回收的价格就变的那么低呢?这里我提醒大家一下不是按出厂价来计算的,我们给出的价格都是行业的,一般是没有厂家或者二道贩子能给出的价格,除非他是在忽悠你给他寄过去。
西门子PLC与西门子触摸屏连接用的电缆是什么型号
西门子PLC与西门子触摸屏连接用的电缆是PC-PPI型号。
德国西门子(SIEMENS)公司生产的可编程序控制器在我国的应用也相当广泛,在冶金、化工、印刷生产线等领域都有应用。西门子(SIEMENS)公司的PLC产品包括LOGO、S7-200、S7-1200、S7-300、S7-400等。 西门子S7系列PLC体积小、速度快、标准化,具有网络通信能力,功能更强,可靠性高。S7系列PLC产品可分为微型PLC(如S7-200),小规模性能要求的PLC(如S7-300)和中、要求的PLC(如S7-400)等。
西门子SIMATIC系列PLC,诞生于1958年,经历了C3,S3,S5,S7系列,已成为应用非常广泛的可编程控制器。
西门子(SIMATIC)PLC的6代
1、西门子公司的产品早是1975年投放市场的SIMATIC S3,它实际上是带有简单操作接口的二进制控制器。
2、1979年,S3系统被SIMATIC S5所取代,该系统广泛地使用了微处理器。
3、20世纪80年代初,S5系统进一步升级——U系列PLC,较常用机型:S5-90U、95U、100U、115U、135U、155U。
4、1994年4月,S7系列诞生,它具有更国际化、更等级、安装空间更小、更良好的WINDOWS用户界面等优势,其机型为:S7-200、300、400。
5、1996年,在过程控制领域,西门子公司又提出PCS7(过程控制系统7)的概念,将其优势的WINCC(与WINDOWS兼容的操作界面)、PROFIBUS(工业现场总线)、COROS(系统)、SINEC(西门子工业网络)及控调技术融为一体。
6、西门子公司提出TIA(Totally Integrated Automation)概念,即全集成自动化系统,将PLC技术溶于全部自动化领域。
由初发展至今,S3、S5系列PLC已逐步退出市场,停止生产,而S7系列PLC发展成为了西门子自动化系统的控制核心,而TDC系统沿用SIMADYN D技术内核,是对S7系列产品的进一步升级,它是西门子自动化系统,功能强的可编程控制器。
怎样用西门子S7-200外加定位模块控制三台步进电机?
用西门子S7-200外加定位模块控制三台步进电机,分别是X,Y,Z轴,每个轴都有一个原点感应器,流程是:
X轴发送5000脉冲,完毕后Y轴2000个脉冲,然后是Z轴再发送200个脉冲,完毕后三轴回原点;回原点后停2S,然后X轴发送5500脉冲,完毕后Y轴2200个脉冲,然后是Z轴再发送300个脉冲,完毕后三轴回原点;回原点后再停2S,然后X轴发送6000脉冲,完毕后Y轴2300个脉冲,然后是Z轴再发送400个脉冲,完毕后三轴回原点。
编程思路1:
S7-200/PLC是晶体管型,本身就能控制两台步进马达(也只能控制两台),第三台步进马达追加用定位模块来控制。讨论:是否需要用到中断(比如X轴发完脉冲产生中断,此中断子程序再控制Y轴发脉冲,Y轴发完后再产生中断,此中断子程序再控制Z轴,Z轴发完后产生中断,此中断子程序使各个轴回原点)
编程思路2:
西门子的位控模块只能控制一台步进电机,要想控制3台的话,前提是3台电机不能同时运行,还要增加一个数字量的输入\输出模块,将位控模块的脉冲输出接在数字量模块的输入端,3台电机的脉冲信号线分别接在数字量模块的输出端,编程序来转换脉冲信号给不同的电机,方向信号3台电机可以并在一起就可以了.因为只有一台得到脉冲信号的电机才能运行
主要抗干扰措施
1)合理处理电源以抑制电网引入的干扰
对于电源引入的电网干扰可以安装一台带屏蔽层的变比为 1∶1 的隔离变压器,以减少设备与地之间的干扰,还可以在电源输入端串接 LC 滤波电路。
2)合理安装与布线
动力线、控制线以及 PLC 的电源线和 RS485 网线应分别配线,各走各的桥架或线槽。PLC 应远离强干扰源,柜内 PLC 应远离动力线( 二者之间距离应大于 200 mm),与 PLC 装在同一个柜子内的电感性负载,如功率较大的继电器、接触器的线圈,应并联 RC 消弧电路。PLC 的输入与输出好分开走线,开关量与模拟量也要分开敷设。模拟量信号的传送应采用屏蔽线,屏蔽层应一端或两端接地,接地电阻应小于屏蔽层电阻的 1/10。交流输出线和直流输出线不要用同一根电缆,输出线应尽量远离高压线和动力线,避免并行。
4.1.4 正确选择接地点以完善接地系统
PLC 控制系统的地线包括系统地、屏蔽地、交流地和保护地等。接地系统混乱对 PLC 系统的干扰主要是各个接地点电位分布不均,不同接地点间存在地电位差,引起地环路电流,影响系统正常工作。
1)安全地或电源接地:将电源线接地端和柜体连线接地为安全接地。
2)系统接地:PLC 控制器为了与所控的各个设备同电位而接地,叫系统接地。接地电阻值不得大于 4 Ω,一般需将 PLC 设备系统地和控制柜内开关电源负端接在一起,作为控制系统地。
3)信号与屏蔽接地:一般要求信号线要有的参考地。
4.2 步进电机的选择
S7—300的介绍
PLC实质是一种于工业控制的计算机,其硬件结构基本上与微型计算机相同。
处理单元(CPU)是PLC的控制。它按照PLC系统程序赋予的功能接收并存储从编程器键入的用户程序和数据;检查电源、存储器、I/O以及警戒定时器的状态,并能诊断用户程序中的语法错误。当PLC投入运行时,它以扫描的方式接收现场各输入装置的状态和数据,并分别存入I/O映象区,然后从用户程序存储器中逐条读取用户程序,经过命令解释后按指令的规定执行逻辑或算数运算的结果送入I/O映象区或数据寄存器内。等所有的用户程序执行完毕之后,后将I/O映象区的各输出状态或输出寄存器内的数据传送到相应的输出装置,如此循环运行,直到停止运行。
为了进一步提高PLC的可靠性,近年来对大型PLC还采用双CPU构成冗余系统,或采用三CPU的表决式系统。这样,即使某个CPU出现故障,整个系统仍能正常运行。
存储器存放系统软件的存储器称为系统程序存储器。存放应用软件的存储器称为用户程序存储器。
PLC常用的存储器类型:
1)RAM这是一种读/写存储器(随机存储器),其存取速度快,由锂电池支持。
2)EPROM这是一种可擦除的只读存储器。在断电情况下,存储器内的所有内容保持不变。
3)EEPROM这是一种电可擦除的只读存储器。使用编程器就能很容易地对其所存储的内容进行修改。
空间的分配:
虽然各种PLC的CPU的大寻址空间各不相同,但是根据PLC的工作原理,其存储空间一般包括以下三个区域:
1)系统程序存储区
2)系统RAM存储区(包括I/O映象区和系统软设备等)
3)用户程序存储区
系统程序存储区:在系统程序存储区中存放着相当于计算机操作系统的系统程序。包括程序、管理程序、命令解释程序、功能子程序、系统诊断子程序等。由制造厂商将其固化在EPROM中,用户不能直接存取。它和硬件一起决定了该PLC的性能。
系统RAM存储区:系统RAM存储区包括I/O映象区以及各类软设备,如:逻辑线圈、数据寄存器、计时器、计数器、变址寄存器、累加器等存储器。
1)I/O映象区:由于PLC投入运行后,只是在输入采样阶段才依次读入各输入状态和数据,在输出刷新阶段才将输出的状态和数据送至相应的外设。因此,它需要一定数量的存储单元(RAM)以存放I/O的状态和数据,这些单元称作I/O映象区。一个开关量I/O占用存储单元中的一个位(bit),一个模拟量I/O占用存储单元中的一个字(16个bit)。因此整个I/O映象区可看作两个部分组成:开关量I/O映象区;模拟量I/O映象区。
2)系统软设备存储区 :除了I/O映象区区以外,系统RAM存储区还包括PLC内部各类软设备(逻辑线圈、计时器、计数器、数据寄存器和累加器等)的存储区。该存储区又分为具有失电保持的存储区域和无失电保持的存储区域,前者在PLC断电时,由内部的锂电池供电,数据不会遗失。
CPU313C集成有3个用于高速计数或高频脉冲输出的通道,3个通道位于CPU313C集成数字量输出点字节的低三位,这三位通常情况下可以作为普通的数字量输出点来使用。在需要高频脉冲输出时,可通过硬件设置定义这三位的属性,将其作为高频脉冲输出通道来使用。作为普通数字量输出点使用时,其系统默认地址为Q124.0、Q124.1、Q124.2(该地址用户可根据需要自行修改),作为高速脉冲输出时,对应的通道分别为0通道、1通道、2通道(通道号为固定值,用户不能自行修改)。每一通道都可输出高频率为2.5KHZ(周期为0.4ms)的高频脉冲。CPU313C中,X2前接线端子22、23、24号接线端子分别对应通道0、通道1、和通道2。另外,每个通道都有自己的硬件控制门,0通道的硬件门对应X2前接线端子的4号接线端子,对应的输入点默认地址为I124.2。1通道硬件门7号接线端子,对应的输入点默认地址为I124.5,而2号通道硬件门为12号接线端子,对应的输入点默认地址为I125.0。
西门子 PLC 应用中需要注意的问题
1)温度:PLC 要求环境温度在 0 ℃~55 ℃,安装时不能放在发热量大的元件下面,四周通风散热的空间应足够大。
2)湿度:为了 PLC 的绝缘性能,空气的相对湿度应小于 85%( 无露珠) 。
3)震动:应使 PLC 远离强烈的震动源,防止振动频率为 10 Hz~55Hz 的频繁或连续振动。当使用环境不可避免震动时,采取减震措施,如采用减震胶等。
4)空气:避免有腐蚀和易燃的气体,如、硫化氢等。对于空气中有较多粉尘或腐蚀性气体的环境,可将 PLC 安装在封闭性较好的控制室或控制柜中。
5)电源:PLC 对于电源线带来的干扰具有一定的能力。在可靠性要求很高或电源干扰特别严重的环境中,可以安装一台带屏蔽层的隔离变压器,以减少设备与地之间的干扰。一般 PLC 都有直流 24 V输出提供给输入端,当输入端使用外接直流电源时,应选用直流稳压电源。普通的整流滤波电源,由于纹波的影响,容易使 PLC 接收到错误信息。
4.1.2 控制系统中干扰及其来源
影响 PLC 控制系统的干扰源,大都产生在电流或电压剧烈变化的部位,其原因是电流改变产生磁场,对设备产生电磁;磁场改变产生电流,电磁高速产生电磁波,电磁波对其具有强烈的干扰。
1)强电干扰。由于电网覆盖范围广,电网受到空间电磁干扰而在线路上感应电压。尤其是电网内部的变化,刀开关操作浪涌、大型电力设备启停、交直流传动装置引起的谐波、电网短路暂态冲击等,都通过输电线路传到电源原边。
2)柜内干扰。控制柜内的高压电器,大的电感性负载,混乱的布线都容易对 PLC 造成一定程度的干扰。
3)来自接地系统混乱时的干扰。正确的接地,既能抑制电磁干扰的影响,又能抑制设备向外发出干扰;而错误的接地,反而会引入严重的干扰信号,使 PLC 系统将无常工作。
4)来自 PLC 系统内部的干扰。主要由系统内部元器件及电路间的相互电磁产生,如逻辑电路相互及其对模拟电路的影响,模拟地与逻辑地的相互影响及元器件间的相互不匹配使用等。
5)变频器干扰。一是变频器启动及运行过程中产生谐波对电网产生传导干扰,引起电网电压畸变,影响电网的供电质量;二是变频器的输出会产生较强的电磁辐扰,影响周边设备的正常工作。