结冰传感器的分类方法很多。根据检测机理可将结冰传感器分为:光学式、电学式、机械式等。光学式根据冰、水与空气的光学性质的不同检测结冰。
一种典型的光学式结冰传感器为光纤式结冰传感器,是用两根同心结构的光纤,中心圆形为发射光纤,可以发出红外光;外围圆环形为接收光纤,可以接受和检测散射和反射回来的红外光。
一种比较典型的机械式结冰传感器是基于压电效应的平膜式结冰传感器。检测原理是:平膜上有结冰时,结冰增大了平膜的刚度,使平膜的谐振频率增大。通过压电陶瓷的压电效应驱动平膜振动在其谐振频率上,通过压电陶瓷的逆压电效应实时监测其谐振频率。
美国NASA曾提出过一种微加工工艺制作的电容式结冰传感器,敏感结构是一个7微米厚度薄膜,整个薄膜为扩散硅层,作为电容的公共电极。用静电键合工艺将薄膜和一个有HF腐蚀的凹槽的pyrex玻璃键合到一起,将凹槽封闭为电容间隙。凹槽里有两个同心的方形电极,中心正方形的为驱动电极,外围回字形的为检测电极。驱动电极和公共电极之间加静电,平膜变形。检测电极和公共电极之间的电容称为检测电容。平膜上有结冰时,结冰增大了平膜刚度,使平膜变形量减小,检测电容两电极之间的距离增大,检测电容减小。通过检测电容的减小量来确定结冰厚度。
红外线传感器常用于无接触温度测量,气体成分分析和无损探伤,在医学、军事、空间技术和环境工程等领域得到广泛应用。例如采用红外线传感器远距离测量人体表面温度的热像图,可以发现温度异常的部位。
利用红外线的物理性质来进行测量的传感器。红外线又称红外光,它具有反射、折射、散射、干涉、吸收等性质。任何物质,只要它本身具有一定的温度(零度),都能辐射红外线。红外线传感器测量时不与被测物体直接接触,因而不存在摩擦,并且有灵敏度高,反应快等优点。