长安大学张秀华等进行了溶剂型冷补胶结料的研制, 并且成品——HU-L研制成功。此材料具有较好的环保性和施工简便性;修复完成后初期在荷载的作用下会不断与旧沥青路面黏结、融合;路面具有一定的柔软性;修补材料不粘车轮,不粘修复工具,受天气影响较小,施工成本降低。
同济大学吕伟民教授对溶剂型冷补沥青混合料的强度形成机理进行了系统研究,认为材料的介质是沥青, 沥青分子间的作用是黏结力的重要来源,沥青分子的稠度是黏结性、强度的来源,通过分析升温、加压后沥青分子的布朗运动研究冷补料的性能,结果表明冷补沥青混合料的性能主要与沥青黏度、矿粉用量、沥青膜厚度等相关
由基础沥青、稀释剂、添加剂等组成,主要依靠稀释剂(煤油、柴油、植物油等)来降低沥青黏度,常温流动性,其混合料强度的形成(图1)与稀释剂的挥发速率直接相关,受温度、湿度影响较大。缺点是初期强度较弱,强度增长缓慢,前期主要采用高矿粉掺量来提高强度,且稀释剂挥发会造成环境污染,材料不能重复利用。目前,国内对于溶剂型冷补料的研究与应用较多。
主要是以高分子反应型树脂材料作为冷补料的胶结料,采用2种或2种以上组分的树脂材料进行交联固化反应(图3),这种胶结料具有较高的机械强度、高低温性能、耐水性和耐磨性。混合料强度较高、成型较快、修补效果好,一般是现场拌合就地修补,短时间内即可开放交通;不足之处在于成本太高。国内对于反应型冷补料的研究刚刚起步,尚未推广应用。
对于溶剂型冷补料,稀释剂是沥青常温流动性的,而添加剂则是稀释沥青补强的关键成分,应加大对于冷补料添加剂的研发,深入对冷补料级配理论的研究,提高稀释剂的挥发速率。
对于反应型冷补料,低成本、的反应型树脂胶结料是未来的发展方向,应加大对反应型冷补料性能的研究,把控反应型树脂的反应时间以及强度增长规律,规范其混合料的施工技术。