增强的玻璃纤维有很多种型式,例如短切纤维纱、连续纤维无捻粗纱、网格布、短切纤维毡等,不同型式的玻璃纤维掺入到水泥基体中的方法不同,相同型式的玻璃纤维掺入到水泥基体中的方法也不完全相同。而且玻璃纤维的掺入量和使用方式对于玻璃纤维增强水泥复合材料的力学性能有着很大的影响。
喷射工艺是应用早并且多的制造GRC制品的方法,包括手工喷射和自动喷射。20世纪70年代初英国建筑研究院(BRE)先用此方法制造玻璃纤维增强水泥(GRC)制品。
不管是手工喷射还是机械喷射,喷射工艺都需要经过训练的操作人员和设备。操作方法的正确与否很大程度影响到GRC制品的强度和耐久性。对于喷射工艺而言,玻璃纤维以二维乱向随机分布于水泥砂浆之中,纤维的有效利用率高,产品的各项物理性能也较好。
由于玻璃纤维的表面非常光滑,普通GRC中玻纤-水泥界面过渡区是薄弱的环节,AR纤维理论上只能发挥其强度效能的14.3%。界面理论认为:玻纤-水泥界面结合力如果太弱,受载时,纤维会大量拔出,GRC强度很低;但如果结合力过强,纤维表面应力集中,导致纤维受损,材料脆断,既降低强度,又降低塑性。
只有界面结合力适中的GRC才能呈现出高强度和高韧性。界面优化涉及原材料的匹配、工艺方法与参数的设定、生产环境与条件的作用等诸多问题。
玻纤均匀良好的交织形态和取向是制造GRC的关键技术之一。是GRC的均质性的条件,如果出现局部纤维含量过低,或是缠绕结团都会严重影响GRC的品质,甚至发生安全事故。通过化学分散剂和机械分散器专有技术相结合的方法获得了非常好的均匀分散效果。了终产品的稳定性和可靠性。
不同的应用条件对GRC的性能要求有很大差别。众所周知,沿海地区与城市中心,高层建筑与低矮的别墅,其风荷载相差很大。再例如:屋面与墙面比较,屋面的条件就要恶劣的多,普通GRC就难以胜任,因为屋面受到雨水、冰冻、阳光直射的作用,GRC材料会产生湿胀干缩、热胀冷缩,缺乏抗疲劳能力的普通GRC内部结构会发生破坏。还有许多情况考虑:表面粗糙与光滑;浅色与深色对阳光产生的热能吸收
通常情况下,脱模后的GRC构件都需求经过水磨、酸洗、喷砂、凿石、着色、喷涂等方法,使GRC构件具有特殊的外表装修作用。首要,需要思考GRC构件的颜色,从而选择什么样的油漆,然后打磨以后将油漆一层层的刷上去,竣工以后,你去发现,基本的装修作用现已出来了。接着,在外面的表层方位进行防水防污的处理。