产业角度:我国航空航天高温合金已从研究到全面大规模国产化的拐点。需求端方面,我国型号武器装备在“十三五”已经跨过研制定型阶段,在“十四五”将进入批量列装阶段,随之带动高温合金材料也会从“多品种、小批量”进入“大规模批产”阶段。供给端方面,我国高温合金经历从仿制到引进再到自主创新的过程,目前已形成一定规模拥有较技术装备的生产基地
国内发展
自1956年炉高温合金GH3030试炼成功,迄今为止,我国高温合金的研究、生产和应用已历经60年的发展历程。60年的高温合金发展可以分为三个阶段。
个阶段:从1956年至20世纪70年代初是我国高温合金的创业和起始阶段。本阶段主要是仿制前苏联高温合金为主体的合金系列,如:GH4033,GH4049,GH2036,GH3030,K401和K403等。
第二个阶段:从20世纪70年代中至90年代中期,是我国高温合金的提高阶段。主阶段主要试制欧美型号的发动机,提高高温合金生产工艺技术和产品质量控制。
第三阶段:从20世纪90年代中至今,是我国高温合金的全新发展阶段。本阶段主要是应用和开发了一批新工艺,研制和生产了一系列、次的新合金。
我国的高温合金研究主要研究单位是钢铁研究总院、北京航空材料研究院、中国科学院金属研究所、北京科技大学、东北大学、西北工业大学等,主要生产企业有:中航工业、钢研高纳、炼石有色、抚顺特钢、高钢特钢和第二重型机械集团万航模锻厂(二重)等。在此基础上,我国已具备了高温合金新材料、新工艺自主研发和研究的能力。
虽然高温金属合金材料在我国已发展近60年,但行业发展仍处于成长期。由于高温金属合金材料领域具有较高技术含量,该行业企业拥有较深护城河。我国高温金属合金每年需求量在2万吨以上,国内年生产量在1万吨左右,市场容量超过80亿元,其中进口占比较大。未来20年我国各类军机采购需求在2800架左右,民用飞机采购数量在5400架左右,对应的高温合金需求在1500亿以上,再加上500亿的燃气轮机需求,仅高温合金空间一项就有2000亿的市场空间即将打开。
我国生产能力与需求相比存在两个缺口:
(1)生产能力不足。我国高温合金生产企业数量有限,生产能力与需求之间存在较大缺口,在燃气轮机、核电等领域的高温合金主要还依赖进口。
(2)产品难以满足应用需求。我国的高温合金生产水平与美国、俄罗斯等国有着较大差距,随着我国研制更的航空航天发动机,高温合金材料在供应上存在无法满足应用需求的现象
制备工艺
1、铸造冶金工艺
各种铸件制造技术和加工设备在不断开发和完善,如热控凝固、细晶工艺、激光成形修复技术、耐磨铸件铸造技术等,原有技术水平不断提高完善从而提高各种高温合金铸件产品的质量一致性和可靠性。
不含或少含铝、钛的高温合金,一般采用电弧炉或非真空感应炉冶炼。含铝、钛高的高温合金如在大气中熔炼时,元素烧损不易控制,气体和夹杂物进入较多,所以应采用真空冶炼。为了进一步降低夹杂物的含量,改善夹杂物的分布状态和铸锭的结晶组织,可采用冶炼和二次重熔相结合的双联工艺。冶炼的主要手段有电弧炉、真空感应炉和非真空感应炉;重熔的主要手段有真空自耗炉和电渣炉。
固溶强化型合金和含铝、钛低(铝和钛的总量约小于4.5%)的合金锭可采用锻造开坯;含铝、钛高的合金一般要采用挤压或轧制开坯,然后热轧成材,有些产品需进一步冷轧或冷拔。直径较大的合金锭或饼材需用水压机或快锻液压机锻造。
2、结晶冶金工艺
为了减少或消除铸造合金中垂直于应力轴的晶界和减少或消除疏松,近年来又发展出定向结晶工艺。这种工艺是在合金凝固过程中使晶粒沿一个结晶方向生长,以得到无横向晶界的平行柱状晶。实现定向结晶的首要工艺条件是在液相线和固相线之间建立并保持足够大的轴向温度梯度和良好的轴向散热条件。此外,为了消除全部晶界,还需研究单晶叶片的制造工艺。
3、粉末冶金工艺
粉末冶金工艺,主要用以生产沉淀强化型和氧化物弥散强化型高温合金。这种工艺可使一般不能变形的铸造高温合金获得可塑性甚至超塑性。
4、强度提高工艺
⑴固溶强化
加入与基体金属原子尺寸不同的元素(铬、钨、钼等)引起基体金属点阵的畸变,加入能降低合金基体堆垛层错能的元素(如钴)和加入能减缓基体元素扩散速率的元素(钨、钼等),以强化基体。
⑵ 沉淀强化
通过时效处理,从过饱和固溶体中析出第二相(γ’、γ"、碳化物等),以强化合金。γ‘相与基体相同,均为面心立方结构,点阵常数与基体相近,并与晶体共格,因此γ相在基体中能呈细小颗粒状均匀析出,阻碍位错运动,而产生显著的强化作用。γ’相是A3B型金属间化合物,A代表镍、钴,B代表铝、钛、铌、钽、钒、钨,而铬、钼、铁既可为A又可为B。镍基合金中典型的γ‘相为Ni3(Al,Ti)。
γ’相的强化效应可通过以下途径得到加强:
①增加γ‘相的数量;
②使γ’相与基体有适宜的错配度,以获得共格畸变的强化效应;
③加入铌、钽等元素增大γ’相的反相畴界能,以提高其抵抗位错切割的能力;
④加入钴、钨、钼等元素提高γ‘相的强度。γ"相为体心四方结构,其组成为Ni3Nb。因γ"相与基体的错配度较大,能引起较大程度的共格畸变,使合金获得很高的屈服强度。但超过700℃,强化效应便明显降低。钴基高温合金一般不含γ相,而用碳化物强化。