世通仪器检测在全国有多个实验室欢迎来电咨询:陈工(广东,江苏,陕西,河南,重庆,四川,福建,安徽,浙江,江西等等)均可上门检测,校准证书带CNAS,出证书快,证书可加急,(主要业务:仪器计量,仪器校准,仪器检测,仪器校验,仪器外校,仪器校正,仪器测量,仪器测试,仪器标定,仪表计量,仪表校准,仪表检测,仪表校验,仪表外校,仪表校正,仪表测量,仪表测试,仪表标定,量具计量,量具校准,量具检测,量具校验,量具外校,量具校正,量具测试,量具测量,量具标定,器具计量,器具校准,器具检测,器具校验,器具外校,器具校正,器具测量,器具测试,器具标定,设备计量,设备校准,设备检测,设备校验,设备外校,设备校正,设备测量,设备测试,设备标定)报价流程:发公司名称和仪器清单-收到清单开始报价-价格合适预排时间上门检测或者寄实验室检测-检测好1-5天出证书-寄回证书-付款。1、电压、电流和功率的选择
根据被测设备的输出特性来选择电子负载:电压,电流,功率和测试需求度。电子负载的模组在测试时只能够单工作或者并联操作,串联对于模组来说是很危险的。所以理想的状态是所有要求均在单模组的量程范围内,其次是通过多模组并联能够实现的选型。也就是说,所选模组的电压时一定要符合测试要求。单个模组或者满装机框时的电流和功率总和要满足测试要求。 [3]
2、度和分辨率的选择
度和分辨率是电子负载的一个重要的参数指标。电子负载的度不同表示方法的意义。举例如下:
1%+2d 1%的测量值+小显示值的2倍
1%+2%FS: 1%的测量值+1%的满量程
1%OF: 1%的(满量程+测量值)1、基本功能
市面上的电子负载均有基本的四项功能:恒流、恒压、恒阻和恒功率(安捷伦没有恒功率)。在功能基本相同,度相差不大的情况下,怎么判断是否符合要求呢?CHROMA和博计的电子负载只有一套工作电路,就是恒流功能。其他功能是根据欧姆定律计算出来,虽然标称有其他功能,但是实际情况是只有恒流功能,通过调节电流来实现其他功能。这样节省了成本,却留下了其他功能工作精度低,工作的不稳定,在他们内部流传的一句话是,恒阻功能的误差没有上限。测试完成的情况,要看电源的质量,外部环境和运气了。而安捷伦电子负载的所有功能均有不同的电路实现,完够很好的完成所标称的所有极限指标,稳定带载。
如果只是用到恒流功能,对其他功能要求不多的情况下,可以选用合适的,符合度的电子负载。如果对其他功能要求能够稳定的带载,就要考虑这个问题了。 [3]
2、动态带载
动态带载,就是电子负载做模拟的变化带载,也叫瞬态。几个重要的参数:
变化斜率:笼统的说是电子负载可以完成的变化速度,地说是电子负载变化时,从变化量的10%~90%的变化速率。恒流状态下的单位是A/mS,A/μS。
响应时间:电子负载可以完成变化的小时间。单位μS。
3、电子负载的动态(瞬态)频率
一个电子负载是否做的货真价实,就要看电子负载的变化带载完成的情况了。如果是硬件实现的功能,就可以用示波器测试电流输出监视端口,查看波形是否完好。如果出现毛刺或者信噪比很大的情况下,那么此功能仅仅是由软件计算,而不是硬件实现的。
软件实现的动态带载时无法的执行电子负载所设定的变化。但是如果要求不高,可忽略这种现象造成的影响。
4、模拟带载(外部编程输入)
本功能是为了实现更复杂的电子负载带载变化情况而设定的功能。动态带载是模拟一个梯形波变化的带载功能,而本功能大大扩充了电子负载所能执行的变化方式。只要信号发生器能够发生的电压在10V以下的波形信号,电子负载均能模拟。拥有此功能的电子负载有,安捷伦和博计。其中博计是不建议客户使用此功能。
5、序列功能
序列功能是指把很多定态设置按时间顺序排列组合成一个测量过程。可以完成一个产品的整个质量参数的测量,本功能大大简化了繁琐的设置,减轻了测试工作量。配合存储设置和调用功能,更是大大简化了操作。序列的可设置步骤跟据品牌不同而不同。
6、附加功能选择
如果还需要电子负载的其他功能,请参看需求选择拥有对应功能的电子负载。比如
同步功能:可以同时操作多个模组的工作状态。
联机接口:GPIB,RS232,LAN,USB,选择适合的。
组装ATE测试系统:考虑接线柱连接其他设备的方便性,考虑命令的标准性等等。
过流,过功率测试(OCP,OPP):在产品需要的时候选择此功能,适用于研发等。
总言:电子负载的种类是多种多样的,选择适合的电子负载是电源类研发或者生产中一个重要的方面。在可以接受的成本下,选择更好更方便的电子负载是提率,质量的前提。
世通仪器检测在全国有多个实验室欢迎来电咨询:陈工(广东,江苏,陕西,河南,重庆,四川,福建,安徽,浙江,江西等等)均可上门检测,校准证书带CNAS,出证书快,证书可加急,(主要业务:仪器计量,仪器校准,仪器检测,仪器校验,仪器外校,仪器校正,仪器测量,仪器测试,仪器标定,仪表计量,仪表校准,仪表检测,仪表校验,仪表外校,仪表校正,仪表测量,仪表测试,仪表标定,量具计量,量具校准,量具检测,量具校验,量具外校,量具校正,量具测试,量具测量,量具标定,器具计量,器具校准,器具检测,器具校验,器具外校,器具校正,器具测量,器具测试,器具标定,设备计量,设备校准,设备检测,设备校验,设备外校,设备校正,设备测量,设备测试,设备标定)报价流程:发公司名称和仪器清单-收到清单开始报价-价格合适预排时间上门检测或者寄实验室检测-检测好1-5天出证书-寄回证书-付款。交流电能表(电度表)是用来测量某一段时间内所消耗的电能的仪表。电能表的型号虽有不同,但其结构、原理是一样的。一般都采用电磁感应原理制成的 [1] 。
产品技术性能
(1) 电压输入:
额定电压:
100V (经电压互感器接入,功耗小于0.2VA)
400V (直接接入)
允许频率范围:45~65Hz
输入电压允许过载: 2 倍额定值(连续)
(2) 电流输入:
额定电流:5A(经电流互感器接入,功耗小于0.5VA)
特殊规格可定制
输入电流允许过载:2 倍额定值(连续)模拟示波器,采用的是模拟电路(示波管,其基础是电子枪)电子枪向屏幕发射电子,发射的电子经聚焦形成电子束,并打到屏幕上,屏幕的内表面涂有荧光物质,这样电子束打中的点就会发出光来。如何校正模拟示波器
示波器与其它仪器一样(如万用表等),在使用之前都必需要先对其进行校正。而所谓对示波器的校正,是将示波器的原来波形在测试之前正确调试出来。也就是说,校正出来的波形要与示波器本身所设定的参数一致(这些参数通常会在校正的测试点标志出来)。以GW GOS-602示波器为例(左图):在其面板的左下角就是要求校正波形的参数,如电压值为2V、频率是1KHz等(右图),就是要求示波器的校正波形(或正、余弦波、方波)的电压峰峰值为2V、频率为1KHz。但示波器通常不能直接显示波形的频率,而是根据频率与周期的转换(T=1/f)来将频率化为周期,再用周期波表示频率(频率1KHz的等效周期为1mS)。
在校正波形过程中,为了方便观察波形,应将波形的中心位置调节好,这就要将输入之间的连接模态信号的开关拨到GND位置上(左下图)。这时若正常接通电源,应该能够显出一条水平亮线;如果没有显示,那就要上下调节POSITION、DC BALT和INTER了。其中,POSITION是波形上下调节按钮(中图),DC BAL是水平亮线的中心调整,INTER是亮度调整,如果现出亮线不平衡(相对于X轴)时,则要用无感螺丝刀调节在FOCUS附近的TEACE ROTATION(右下图),之后通过FOCUS的调节把会聚调至佳状态。完成后,将GND转换为AC挡(图a);在输入校正波形时,要把衰减或扩大按钮调到原始位置上,如果拨错了会严重影响被测波形数值的准确性;对输入踪道的选择,完全操纵在MODE选择键上(图b);调试出来的波形如果是闪烁不定的,那就要考虑到同步功能键,即LEVEL(水平同步调节)而通常需要校正的主要是电压峰峰值和周期数的调节,这也是我们对波形的测试内容。这些调节由按钮VOLTS/DIV、TIME/DIV、SWP.VAR,VOLTS/DIV共同配合完成,各按钮上的标志指向哪一个数值,表示这一数值就是显示屏的坐标轴上每一格的单位数值。横坐标表示周期,纵坐标表示电压幅值,例如:VOLTS/DIV白色点拨在1V(左下图),即表示纵坐标的每一小格的电压幅值为1V;在TIME/DIV上将点指向1mSV(右下图),即表示横坐标的每一小格的周期为1mS。再根据波形所占的单位格数,就可以直接读出(或者经验算后读出)波形的幅度和周期,进而用来判断是非曲直、分析故障原因了。所以说,在使用之前
世通仪器检测在全国有多个实验室欢迎来电咨询:陈工(广东,江苏,陕西,河南,重庆,四川,福建,安徽,浙江,江西等等)均可上门检测,校准证书带CNAS,出证书快,证书可加急,(主要业务:仪器计量,仪器校准,仪器检测,仪器校验,仪器外校,仪器校正,仪器测量,仪器测试,仪器标定,仪表计量,仪表校准,仪表检测,仪表校验,仪表外校,仪表校正,仪表测量,仪表测试,仪表标定,量具计量,量具校准,量具检测,量具校验,量具外校,量具校正,量具测试,量具测量,量具标定,器具计量,器具校准,器具检测,器具校验,器具外校,器具校正,器具测量,器具测试,器具标定,设备计量,设备校准,设备检测,设备校验,设备外校,设备校正,设备测量,设备测试,设备标定)报价流程:发公司名称和仪器清单-收到清单开始报价-价格合适预排时间上门检测或者寄实验室检测-检测好1-5天出证书-寄回证书-付款。的校正工作是非常重要
在正式进行校正之前,根据示波器左下角校正的参考数值,应把电压挡拨到单位1V、把周期挡位拨到1mS的位置上(当然,你也可以选择其它为单位值),同时还要确认使用哪一个CHANNEL(哪一踪)或者两个CHANNEL一起使用(到底使用哪个,就看你把MODE的选择功能拨到哪个位置上了):CH1(踪)、CH2(第二踪)、DUAL(两踪同时使用)、ADD(双踪叠加)。按POWER开始调整,把输入耦合方式拨到GDN(输入到地),这是用来对波形的中心位置校正的,配合此功能键的还有POSTION(波形上下调节按钮)。由于我们所测量的波形常常是脉冲信号波形,所以当中心位置调整完毕后,在一般情况下都会把挡位拨到AC(交流输入),而DC档位(直流输入)在平时较为少用。
输入方式 语音
将输入方式设到AC后,将信号传输线的探头接到校正的测试口(左下图),即可在显示屏上看到方波。但这时的方波不一定是标准的(正确的),有可能电压的峰峰值不足,周期不对,这个时候就是考验你对这示波器各功能的熟悉程度了。在电压按钮的轴中心有一个按钮,是用来对电压值的补偿的,在正常情况下将它右旋到卡位锁定(中图),就可以正常使用了。如果出现锁定后仍不能回复校正参数值的情况,就要利用这个电压幅值补偿电位器来补偿了。而周期的调节按钮则没有那么隐蔽,它在周期单位设定大按钮的左边,标记是SWP VAP,它可以对波形周期的调整。同时,在SWP VAPR的左边还有一个POSMCN按钮,其作用是将波形水平平移(右下图),它是协调WSP VAP使用的,让我们能更准确方便地观察或调节波形的周期,这些都可以将示波器的原始波形设置成符合校正参考数值。如果遇到了这种情况:探头接到校正测试口时波形不能静止下来。则有可能是因为这个位于周期大按钮右边的LEVEL还没有调试好。LEVEL的名称叫“寻迹电平”,而它的实际作用是用来水平同步补充控制,当两踪同时使用时往往会出现水平不能同步,这个时候就要考虑到LEVEL顶头上的TRIC. ALT按键了,这是强制性锁定。如果你熟悉使用这些键,把示波器的原始波形校正并不是困难的事。
性能特点 语音
操作简单——全部操作都在面板上,波形反应及时,数字示波器往往要较长处理时间。
垂直分辨率高——连续而且无限级,数字示波器分辨率一般只有8位至10位。
数据更新快——每秒捕捉几十万波形,数字示波器每秒捕捉几十个波形。
实时带宽和实时显示——连续波形与单次波形的带宽相同,数字示波器的带宽与取样率密切相关,取样率不高时需借助内插计算,容易出现混淆波形。
注意事项 语音
校正波形不能不特别注意的一个地方就是:信号传输线的信号衰减挡位(见图15)。当其拨到*1时,表示无衰减(平时设置点);拨在*10时,表示衰减10倍,通常在输入信号的频率过低时,它相应的周期会变得很大,这时就要行衰减再作测试了,不过还是要在测试出的结果中提升10倍才行,这样才是原来的波形值。还有一个就是位于SWP VAP和POSMCN中间的扩大按键(*10盘 MAC)(见图16)。当周期单位数设置在低的微秒值都还不能看清波形时,或是说当波形的频率很高时,就要运用到这个扩大按键了。也就是说,所谓的扩大和衰减只是对周期而言,而对电压幅度则不起作用,而且不论是扩大还是衰减,调整波形完毕后都要相应地将周期的倍数缩小或放大。为了使波形的读数更加、清晰,在原始校正波形时,一定要把波形调得准、清晰、线条调至精细,只有这样,读数才会为准确,误差才会减至少,这对故障分析往往有举足轻重的作用。后还有一点需要注意的是:校正波形调整完毕后,所有补偿按钮都不能调动或更改(即SWP VAP和电压补偿),否则将要再次对示波器重新校正一次
模拟示波器使用要求:模拟示波器注意防水,防摔,防尘!
在仪器设备故障检修中的应用 语音
示波器是一种利用电子束的偏转,来重现电信号瞬时图象的仪器.它不仅能测量电压、电流等信号幅度的大小,而且还能测量其周期、频率和相位,并能直观地、形象地显示各种电信号的波形.示波器在仪器设备故障检修中,是一种重要的检查诊断工具,许多人把它比作维修技术人员的“眼睛”.在故障检查中,我们可以应用波形观察、信号寻迹、信号注人等方法,进行监视性观察,测量性观察和检定性观察.通过检测电路的有关测试点,了解电路的工作情况,检查电子元器件的好坏,从而确定和判断电子仪器或装备的整机性能和存在的问题) [1] 。
1)检查直流电派的纹波电压
电源的纹波电压对仪器设备的工作影响很大.直流稳压电源中对纹波电压的大小通常都有相应的技术指标或要求.若超过其规定的指标,仪器便不能很好地工作.笔者在实际工作中,曾碰到过多例因电源纹波增大而导致仪器不能正常工作的情况.例如:一价值数万元的进口COZ培养箱,细胞培养时的设置温度为37℃,而实际显示温度却仅在24~30℃之间跳动,而且温度总升不到设定值.显示温度跳动,说明显示信号中混人了干扰信号;温度升不到设定值,说明控制电路工作失控.用示波器检查,发现纹波电压很大(近4V).疑是滤波电容容t衰退,更换滤波电容,仪器工作正常.是纹波影响了测量和控温部分的工作.因此,碰到仪器工作不稳定时,别忘了检查电源的纹波) [1] 。
2)检查电路中有关测试点或有关电路波形
有的仪器附有电路图,而且电路图中标有测试点及其波形.用示波器检查测试点,观察其波形,分析其差异,便能很快查出其故障) [1] 。
3)检查无圈纸电路或有关元件的工作波形.检查前,应做好以下准备工作
①观察被测电路或器件的连线和结构,参考有关资料,寻找相似电路或器件,进行分析比较,尽可能弄清其原理,绘出其电路框图.做到测量时有的放矢.②对于型号被抹或被涂黑固化的模块,可将其视为“黑匣子”,根据其引脚情况及外围元件,描绘其电路,推侧其电路结构,寻找输人输出.然后用波形观察法进行检查) [1] 。
在上述①②③种故障检查中,示波器主要用作监测性观察.其方法主要是波形观察法.
4)侧.电路或整机的有关技术参数
在这种检测中,示波器主要用作测量性或检定性观察,其方法主要采用信号注人法.以音频放大器为例.利用示波器和信号发生器等辅助仪器,可测量放大器的电压增益、输人阻抗、输出阻抗、输出功率、交调失真等.与此相类似,利用此方法,还可测量示波器的频响和上升时间,检定示波器的某些参数) [1] 。
5)检查数字集成电路的好坏
市售的集成电路检查仪,功能全、用途广、但因价格较贵,因此目前还不能完全普及.仪器设备故障检修中,常常碰到检查集成电路好坏的问题,在条件受限的情况下,我们可以自已动手,自制一些简单实用的仪器.如正弦波信号发生器、方波信号发生器,高低位信号发生器.前两种仪器的电路很多,后一种发生器在检查数字集成电路中具有较大的用途.利用它作信号源,用示波器作监视器,必要时再配上方波发生器,便可检查多种数字集成电路.例如:各种门电路、反相器、缓冲器、译码器、触发器,总线数据收发器。此外,还可以用作微处理器的数据线、地址线,做一些简单的微处理器实验,或检查一些简单的徽处理器故障) [1] 。
6)检查传感器的好坏
很多传感器加其前置放大器,便可构成一个特殊的信号源.例如:温度传忿器,压力传感器、光电传感器、红外传感等。因此,修理数字温控仪时,我们可以用升温法给传感器加温,然后在其前置放大器翰出端用示波器观察其电压的变化情况.修理数字天平时,可在天平上加一个间歇力,用示波器在AD变换前观察其电压的变化.检查传感器的好坏,检查有关电路的故障,一些带信号输出的插口,也可作信号源使用.如计算机显示器插口愉出的R,B,G,H,号,维修显示器时就很有用.利用它,我们可以用示波器寻迹检查显示器的各有关电路.此外,还有一些隐含义信号源,如空中特定频率的电磁场信号,加上调整谐回路及其放大电路,便可构成一个高频或频信号源.检查如接收机、电视机之类的设备时,也可以用示波器对其进行故障寻迹(注:仅观察信号带) [1] 。
世通仪器检测在全国有多个实验室欢迎来电咨询:陈工(广东,江苏,陕西,河南,重庆,四川,福建,安徽,浙江,江西等等)均可上门检测,校准证书带CNAS,出证书快,证书可加急,(主要业务:仪器计量,仪器校准,仪器检测,仪器校验,仪器外校,仪器校正,仪器测量,仪器测试,仪器标定,仪表计量,仪表校准,仪表检测,仪表校验,仪表外校,仪表校正,仪表测量,仪表测试,仪表标定,量具计量,量具校准,量具检测,量具校验,量具外校,量具校正,量具测试,量具测量,量具标定,器具计量,器具校准,器具检测,器具校验,器具外校,器具校正,器具测量,器具测试,器具标定,设备计量,设备校准,设备检测,设备校验,设备外校,设备校正,设备测量,设备测试,设备标定)报价流程:发公司名称和仪器清单-收到清单开始报价-价格合适预排时间上门检测或者寄实验室检测-检测好1-5天出证书-寄回证书-付款。音频测量一般包括信号电压、频率、信噪比、谐波失真等基本参数。大部分音频参数都可以由这几种基本参数组合而成。音频分析可以分为时域分析、频域分析、时频分析等几类。由于信号的谐波失真对于音频测量比较重要,因此将其单归类为失真分析。以下分别介绍各种音频参数测量和音频分析。
基本参数测量
音频测量中需要测量的基本参数主要有电压、频率、信噪比。电压测试可以分为均方根电压(RMS)、平均电压和峰值电压等几种。
频率是音频测量中基本的参数之一。通常利用高频精密时钟作为基准来测量信号的频率。测量频率时,在一个限定的时间内的输入信号和基准时钟同时计数,然后将两者的计数值比较后乘以基准时钟的频率就得到信号频率。随着微处理芯片的运算速度的提高,信号的频率也可以利用快速傅立叶变换通过软件计算得到。
信噪比是音频设备的基本性能指标,是信号的有效电压与噪声电压的比值。信噪比的计算公式为:
2-1
在实际测量中,为方便起见,通常用带有噪声的信号总电压代替信号电压计算信噪比。
时域分析
时域分析通常是将某种测试信号输入待测音频设备,观察设备输出信号的时域波形来评定设备的相关性能。常用的时域分析测试信号有正弦信号、方波信号、阶跃信号及单音突变信号等。例如将正弦信号输入设备,观察输出信号时域波形失真就是一种时域分析方法。
方波分析具有良好的突变性及周期性,通过观察设备对方波信号的输出信号波形能够很好的检测设备的各项性能,因此方波信号成为常用的时域分析信号。
阶跃信号分析比较简单,主要用来检测音频设备对于信号突变的响应灵敏度。阶跃信号分析的参数通常两个,就是阶跃响应信号的上升时间和脉冲宽度。上升时间越小,设备对于信号突变的响应越灵敏,瞬态特性越好;脉宽越小,设备的阻尼特性越好,系统越稳定。
正弦信号在某个时刻峰值突然升高,形成突变,就是单音突变信号。由于单音突变信号的能量集中在一个很窄的频率范围,因此常用单音突变信号检测音频设备在某个特定频率的响应情况。单音突变信号的主要用途是快速判定某些音频设备,例如扬声器的阻尼特性等。
频域分析
频域分析是音频分析的重要内容,频域分析的主要依据是频率响应特性曲线图。前面提到的正弦检测、脉冲检测及大长度序列信号检测都能够得到设备的频率响应。频率响应曲线图反映了音频设备在整个音频范围内的频率响应的分布情况。一般来说曲线峰值处的频率成分,回放声压大、声压强;曲线谷底处频率成分声压小、声音弱。若波峰和波谷起伏太大,则会造成较严重的频率失真。
时频分析
时频特性描述了音频设备在时间轴上随着时间的变化其频域特性的变化情况。时频特性不仅在频率的变化过程中描述了音频设备的响应状态,而且还在时间的变化过程中描述了音频设备的响应状态,也就是从三维的角度全面地描述了音频设备的响应特性。对于放音设备而言,主观听感的评述,如低音是否干净,背景是否无损,层次是否分明,音场的深浅等均与音频设备的时频特性均有密切关系。音频设备的时频特性是客观评价音频设备性能优劣的一个很重要的方面。
失真分析
音频设备的失真包括谐波失真、互调失真、相位失真及瞬态失真等几类。音频测量中重要的是谐波失真,谐波失真,简单地说就是声音信号经音频设备重放后多出来的额外的谐波成分。从听众的角度看,不同的发声物体所发出的声音是由不同的基波和谐波构成的,听众可以根据声音的特性分辨出发声的物体。如果功率放大器将某种乐器所发出的乐音(乐音由基波和谐波组成)放大,经扬声器放音后,对基波和各次谐波的波形形状、幅值和相位均能无失真的重现出来,则可以认为是的放音;否则,扬声器所放出的声音听起来烦躁、别扭,则谐波失真已经达到无法忍受,甚至使人无法分辨发声乐器的种类。因此,谐波失真是音频设备的重要性能指标。
谐波失真的测量方法有两种,一种是以正弦信号输入待测设备,然后分析设备响应信号的频率成分,可以得到谐波失真。另一种更简单的测量方法是利用带阻滤波器滤除响应信号中的基频成分,然后直接测量剩余信号的电压,将其与原响应信号作比较,就可以得到谐波失真。显然第二种方法得到的谐波失真是THD+N,由于采用了信号的总电压值代替了基频分量电压值,因此得到的谐波失真比实际值偏小,且实际的谐波失真越大,误差越大。
在实际的音频测量时,通常在一定的频率范围内选取若干个频率点,分别测量出各点的谐波失真,然后将各谐波失真数值以频率为横坐标连成一条曲线,称为谐波失真曲线。
音频分析仪器编辑 语音
这里所说的音频分析仪器是指既能够测量话筒、音频功放、扬声器等各类单一音频设备各种电声参数,也能测试组合音响、调音台等组合音频设备的整体性能的分析类仪器。市场上已经出现了可用于测量音频设备的各类分析仪器,例如失真度分析器、频谱分析仪、频率计数器、交流电压表、直流电压表、音频示波器等。这些基于各种功能电路的机架式硬件仪器使用简便、测量精度较高,已经获得了广泛的应用。音频设备生产厂家可以利用音频分析仪器检查设备的性能,发现存在的缺陷,从而对设备的设计制造进行改进,消费者也可以利用音频分析仪器对设备进行评估,选择合适的产品。
以组合音响为例,在评价其性能时常常用到术语“音色”,所谓音色就是指音响因高次谐波不同而引起的声音差异。而音响的所谓“平衡感”则是指音响在全频段重放的量感听起来自然的程度。音频分析仪器的作用就是将评价设备各种行业术语以各种量化的特征参数形式表示出来,“音色”所对应的特征参数就是谐波失真的测量,而“平衡感”则涉及到设备在整个音频范围内的频率响应的分布情况。
现状编辑 语音
早期的音频分析仪种类很少,在做音频测量时一般是利用万用电表、频率计、示波器及频谱仪等组合成一套音频测试系统。这种测试系统中间环节多,各环节之间接口匹配较为困难,使用起来比较麻烦,测量结果往往也不。
近年来出现的音频分析仪器也与仪器的主流发展趋势一致,朝着高度集成化、智能化的方向发展,这些仪器集成了复杂音频信号发生装置、功率放大装置等,具备了一些初步的图形化分析功能,使用户很容易组建音频测量系统。
世通仪器检测在全国有多个实验室欢迎来电咨询:陈工(广东,江苏,陕西,河南,重庆,四川,福建,安徽,浙江,江西等等)均可上门检测,校准证书带CNAS,出证书快,证书可加急,(主要业务:仪器计量,仪器校准,仪器检测,仪器校验,仪器外校,仪器校正,仪器测量,仪器测试,仪器标定,仪表计量,仪表校准,仪表检测,仪表校验,仪表外校,仪表校正,仪表测量,仪表测试,仪表标定,量具计量,量具校准,量具检测,量具校验,量具外校,量具校正,量具测试,量具测量,量具标定,器具计量,器具校准,器具检测,器具校验,器具外校,器具校正,器具测量,器具测试,器具标定,设备计量,设备校准,设备检测,设备校验,设备外校,设备校正,设备测量,设备测试,设备标定)报价流程:发公司名称和仪器清单-收到清单开始报价-价格合适预排时间上门检测或者寄实验室检测-检测好1-5天出证书-寄回证书-付款。频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。它又可称为频域示波器、跟踪示波器、分析示波器、谐波分析器、频率特性分析仪或傅里叶分析仪等。现代频谱分析仪能以模拟方式或数字方式显示分析结果,能分析1赫以下的甚低频到亚毫米波段的全部无线电频段的电信号。仪器内部若采用数字电路和微处理器,具有存储和运算功能;配置标准接口,就容易构成自动测试系统。频谱分析系统主要的功能是在频域里显示输入信号的频谱特性。频谱分析仪依信号处理方式的不同,一般有两种类型;即时频谱分析仪(Real-Time Spectrum Analyzer)与扫描调谐频谱分析仪(Sweep-Tuned Spectrum Analyzer).即时频率分析仪的功能为在同一瞬间显示频域的信号振幅,其工作原理是针对不同的频率信号而有相对应的滤波器与检知器(Detector),再经由同步的多工扫描器将信号传送到CRT或液晶等显示仪器上进行显示,其优点是能显示周期性杂散波(Periodic Random Waves)的瞬间反应,其缺点是价昂且性能受限于频宽范围,滤波器的数目与大的多工交换时间(Switching Time).常用的频谱分析仪是扫描调谐频谱分析仪,其基本结构类似超外差式接收器,工作原理是输入信号经衰减器直接外加到混波器,可调变的本地振荡器经与CRT同步的扫描产生器产生随时间作线性变化的振荡频率,经混波器与输入信号混波降频后的中频信号(IF)再放大,滤波与检波传送到CRT的垂直方向板,因此在CRT的纵轴显示信号振幅与频率的对应关系。较低的RBW固然有助于不同频率信号的分辨与量测,低的RBW将滤除较高频率的信号成份,导致信号显示时产生失真,失真值与设定的RBW密切相关,较高的RBW固然有助于宽频带信号的侦测,将增加杂讯底层值(Noise Floor),降低量测灵敏度,对于侦测低强度的信号易产生阻碍,因此适当的RBW宽度是正确使用频谱分析仪重要的概念。
一般维修者不使用,一是他的价格较高,二是操作较为复杂。需要配合信号发生器。但使用起来很方便的可以查找故障。简介
频谱分析仪是对无线电信号进行测量的手段,是从事电子产品研发、生产、检验的常用工具。因此,应用十分广泛,被称为工程师的射频万用表。
传统产品
频谱分析仪
频谱分析仪
传统的频谱分析仪的前端电路是一定带宽内可调谐的接收机,输入信号经变频器变频后由低通滤器输出,滤波输出作为垂直分量,频率作为水平分量,在示波器屏幕上绘出坐标图,就是输入信号的频谱图。由于变频器可以达到很宽的频率,例如30Hz-30GHz,与外部混频器配合,可扩展到100GHz以上,频谱分析仪是频率覆盖宽的测量仪器之一。无论测量连续信号或调制信号,频谱分析仪都是很理想的测量工具。但是,传统的频谱分析仪也有明显的缺点,它只能测量频率的幅度,缺少相位信息,因此属于标量仪器而不是矢量仪器。
现代产品
基于快速傅里叶变换(FFT)的现代频谱分析仪,通过傅里叶运算将被测信号分解成分立的频率分量,达到与传统频谱分析仪同样的结果。这种新型的频谱分析仪采用数字方法直接由模拟/数字转换器(ADC)对输入信号取样,再经FFT处理后获得频谱分布图。
在这种频谱分析仪中,为获得良好的仪器线性度和高分辨率,对信号进行数据采集时 ADC的取样率少等于输入信号高频率的两倍,亦即频率上限是100MHz的实时频谱分析仪需要ADC有200MS/S的取样率。
半导体工艺水平可制成分辨率8位和取样率4GS/S的ADC或者分辨率12位和取样率800MS/S的ADC,亦即,原理上仪器可达到2GHz的带宽,为了扩展频率上限,可在ADC前端增加下变频器,本振采用数字调谐振荡器。这种混合式的频谱分析仪可扩展到几GHz以下的频段使用。
FFT的性能用取样点数和取样率来表征,例如用100KS/S的取样率对输入信号取样1024点,则高输入频率是50KHz和分辨率是50Hz。如果取样点数为2048点,则分辨率提高到25Hz。由此可知,高输人频率取决于取样率,分辨率取决于取样点数。FFT运算时间与取样,点数成对数关系,频谱分析仪需要高频率、高分辨率和高速运算时,要选用高速的FFT硬件,或者相应的数字信号处理器(DSP)芯片。例如,10MHz输入频率的1024点的运算时间80μs,而10KHz的1024点的运算时间变为64ms,1KHz的1024点的运算时间增加至640ms。当运算时间超过200ms时,屏幕的反应变慢,不适于眼睛的观察,补救办法是减少取样点数,使运算时间降低至200ms以下。
用FFT计算信号频谱的算法
离散付里叶变换X(k)可看成是z变换在单位圆上的等距离采样值
同样,X(k)也可看作是序列付氏变换X(ejω)的采样,采样间隔为ωN=2π/N
由此看出,离散付里叶变换实质上是其频谱的离散频域采样,对频率具有选择性(ωk=2πk/N),在这些点上反映了信号的频谱。
根据采样定律,一个频带有限的信号,可以对它进行时域采样而不丢失任何信息,FFT变换则说明对于时间有限的信号(有限长序列),也可以对其进行频域采样,而不丢失任何信息。所以只要时间序列足够长,采样足够密,频域采样也就可较好地反映信号的频谱趋势,所以FFT可以用以进行连续信号的频谱分析
世通仪器检测在全国有多个实验室欢迎来电咨询:陈工(广东,江苏,陕西,河南,重庆,四川,福建,安徽,浙江,江西等等)均可上门检测,校准证书带CNAS,出证书快,证书可加急,(主要业务:仪器计量,仪器校准,仪器检测,仪器校验,仪器外校,仪器校正,仪器测量,仪器测试,仪器标定,仪表计量,仪表校准,仪表检测,仪表校验,仪表外校,仪表校正,仪表测量,仪表测试,仪表标定,量具计量,量具校准,量具检测,量具校验,量具外校,量具校正,量具测试,量具测量,量具标定,器具计量,器具校准,器具检测,器具校验,器具外校,器具校正,器具测量,器具测试,器具标定,设备计量,设备校准,设备检测,设备校验,设备外校,设备校正,设备测量,设备测试,设备标定)报价流程:发公司名称和仪器清单-收到清单开始报价-价格合适预排时间上门检测或者寄实验室检测-检测好1-5天出证书-寄回证书-付款。凯氏定氮仪是根据蛋白质中氮的含量恒定的原理,通过测定样品中氮的含量从而计算蛋白质含量的仪器。因其蛋白质含量测量计算的方法叫做凯氏定氮法,故被称为凯氏定氮仪,又名定氮仪、蛋白质测定仪、粗蛋白测定仪。将有机化合物与硫酸共热使其中的氮转化为硫酸铵。在这一步中,经常会向混合物中加入硫酸钾来提高中间产物的沸点。样本的分析过程的终点很好判断,因为这时混合物会变得无色且透明(开始时很暗)
在得到的溶液中加入少量氢氧化钠,然后蒸馏。这一步会将铵盐转化成氨。而总氨量(由样本的含氮量直接决定)会由反滴定法确定:冷凝管的末端会浸在硼酸溶液中。氨会和酸反应,而过量的酸则会在甲基橙的指示下用碳酸钠滴定。滴定所得的结果乘以特定的转换因子就可以得到结果。
适用范围编辑 语音
凯氏定氮仪仪器用凯氏方法检测谷物、食品、饲料、水、土壤、淤泥、沉淀物和化学品中的氨、蛋白质氮含量、酚、挥发性脂肪酸、氰化物、二氧化硫、乙醇等含量。具有相当好的性价比,仅仅滴定过程需要人工操作一下,非常适合实验室及检验机构常规检测。广泛用于食品、农作物、种子、土壤、肥料等样品的含氮量或蛋白质含量分析。
使用步骤编辑 语音
消化
1、准备6个凯氏烧瓶,标号。1、2、3号烧瓶中分别加入适当浓度的蛋白溶液1.0mL,样品要加到烧瓶底部,切勿沾在瓶口及瓶颈上。再依次加入硫酸钾-硫酸铜接触剂0.3g,浓硫酸2.0mL,30%过氧化氢1.0mL。4、5、6号烧瓶作为空白对照,用以测定试剂中可能含有的微量含氮物质,对样品测定进行校正。4、5、6号烧瓶中加入蒸馏水1.0mL代替样液,其余所加试剂与1、2、3号烧瓶相同。2、将加好试剂的各烧瓶放置消化架上,接好抽气装置。先用微火加热煮沸,此时烧瓶内物质炭化变黑,并产生大量泡沫,务必注意防止气泡冲出管口。待泡沫消失停止产生后,加大火力,保持瓶内液体微沸,至溶液澄清后,再继续加热使消化液微沸15min。在消化过程中要随时转动烧瓶,以使内壁粘着物质均能流入底部,以样品完全消化。消化时放出的气体内含SO2,具有强烈刺激性,因此自始自终应打开抽水泵将气体抽入自来水排出。整个消化过程均应在通风橱中进行。消化完全后,关闭火焰,使烧瓶冷却至室温。
蒸馏吸收
蒸馏和吸收是在微量凯氏定氮仪内进行的。凯氏定氮蒸馏装置种类甚多,大体上都由蒸气发生、氨的蒸馏和氨的吸收三部分组成。
1、仪器的洗涤
仪器安装前,各部件需经一般方法洗涤干净,所用橡皮管、塞须浸在10%NaOH溶液中,煮约10min,水洗、水煮10min,再水洗数次,然后安装并固定在一只铁架台上。仪器使用前,微量全部管道都须经水蒸气洗涤,以除去管道内可能残留的氨,正在使用的仪器,每次测样前,蒸气洗涤5min即可。较长时间未使用的仪器,重复蒸气洗涤,不得少于三次,并检查仪器是否正常。仔细检查各个连接处,不漏气。 在蒸气发生器中加约2/3体积蒸馏水,加入数滴硫酸使其保持酸性,以避免水中的氨被蒸出而影响结果,并放入少许沸石(或毛细管等),以防爆沸。沿小玻杯壁加入蒸馏水约20mL让水经插管流入反应室,但玻杯内的水不要放光,塞上棒状玻塞,保持水封,防止漏气。蒸气发生后,立即关闭废液排放管上的开关,使蒸气只能进入反应室,导致反应室内的水迅速沸腾,蒸出蒸气由反应室上端口通过定氮球进入冷凝管冷却,在冷凝管下端放置一个锥形瓶接收冷凝水。从定氮球发烫开始计时,连续蒸煮5min,然后移开煤气灯。冲洗完毕,夹紧蒸气发生器与收集器之间的连接橡胶管,由于气体冷却压力降低,反应室内废液自动抽到反应室外壳中,打开废液排出口夹子放出废液。如此清洗2~3次,再在冷凝管下换放一个盛有硼酸-指示剂混合液的锥形瓶使冷凝管下口完全浸没在溶液中,蒸馏1~2min,观察锥形瓶内的溶液是否变色。如不变色,表示蒸馏装置内部已洗干净。移去锥形瓶,再蒸馏1~2min,用蒸馏水冲洗冷凝器下口,关闭煤气灯,仪器即可供测样品使用。
2、无机氮标准样品的蒸馏吸收
由于定氮操作繁琐,为了熟悉蒸馏和滴定的操作技术,初学者宜先用无机氮标准样品进行反复练习,再进行有机氮未知样品的测定。常用巳知浓度的标准硫酸铵测试三次。 取洁净的100mL锥形瓶五只,依次加入2%硼酸溶液20mL,次甲基蓝-甲基红混合指示剂(呈紫红色)3~4滴,盖好瓶口待用。取其中一只锥形瓶承接在冷凝管下端,并使冷凝管的出口浸没在溶液中。注意:在此操作之前先打开收集器活塞,以免锥形瓶内液体倒吸。准确吸取2mL硫酸铵标准液加到玻杯中,小心提起棒状玻塞使硫酸铵溶液慢慢流入蒸馏瓶中,用少量蒸馏水冲洗小玻杯3次,一并放人蒸馏瓶中。然后用量筒向小玻杯中加入10 mL 30%NaOH溶液,使碱液慢慢流入蒸馏瓶中,在碱液尚未完全流入时,将棒状玻塞盖紧。向小玻杯中加约5mL蒸馏水,再慢慢打开玻塞,使一半水流入蒸馏瓶,一半留在小玻杯中作水封。关闭收集器活塞,加热蒸气发生器,进行蒸馏。锥形瓶中的硼酸-指示剂混合液由于吸收了氨,由紫红色变成绿色。自变色时起,再蒸馏3~5min,移动锥形瓶使瓶内液面离开冷凝管下口约lcm,并用少量蒸馏水冲洗冷凝管下口,再继续蒸馏1min,移开锥形瓶,盖好,准备滴定。 在一次蒸馏完毕后,移去煤气灯,夹紧蒸气发生器与收集器间的橡胶管,排除反应完毕的废液,用水冲洗小玻杯几次,并将废液排除。如此反复冲洗干净后,即可进行下一个样品的蒸馏。按以上方法用标准硫酸铵再做两次。另取2mL蒸馏水代替标准硫酸铵进行空白测定二次。将各次蒸馏的锥形瓶一起滴定。
3、未知样品及空白的蒸馏吸收
将消化好的蛋白样品三支,空白对照液三支,依次作蒸馏吸收。 加5mL热的蒸馏水至消化好的样品或空白对照液中,通过小玻杯加到反应室中,再用热蒸馏水洗涤小玻杯3次,每次用水量约3mL,洗涤液一并倒入反应室内。其余操作按标准硫酸铵的蒸馏进行。 由于消化液内硫酸钾浓度高而呈粘稠状,不易从凯氏烧瓶内倒出,加入热蒸馏水5 mL稀释之,如果有结晶析出,微热溶解,趁热加入玻杯,使其流入反应室。此外,还应当注意趁仪器洗涤尚未完全冷却时立即加入样品或空白对照液,否则消化液通过冷却的管道容易析出结晶,造成堵塞。
滴定
样品和空白蒸馏完毕后,一起进行滴定。打开接受瓶盖,用酸式微量滴定管以0.0100mol/L的标准盐酸溶液进行滴定。待滴至瓶内溶液呈暗灰色时,用蒸馏水将锥形瓶内壁四周淋洗一次。若振摇后复现绿色,应再小心滴入标准盐酸溶液半滴,振摇观察瓶内溶液颜色变化,暗灰色在一二分钟内不变,当视为到达滴定终点。若呈粉红色,表明已滴定终点,可在已滴定耗用的标准盐酸溶液用量中减去0.02mL,每组样品的定氮终点颜色完全一致。空白对照液接受瓶内的溶液颜色不变或略有变化尚未出现绿色,可以不滴定。记录每次滴定耗用标准盐酸溶液毫升数,供计算用。
缺陷编辑