关键词 |
天津空调自控系统,安徽小型空调自控系统,制作空调自控系统,青海二手空调自控系统 |
面向地区 |
全国 |
精度等级 |
0.1级 |
苏州易控通达自动化科技有限公司-是一家空调自控技术企业。公司主要从事中央空调自控产品销售与系统保养维护。同时具备设计和调试新的中央空调系统的能力。这些年随着制药行业,电子行业对空调要求的提高,公司在洁净空调自动化控制有较多的工程经验。公司主要以技术服务和产品销售两块组成。
(1)风机启停控制及运行状态显示
DDC通过事先编制的启停控制软件,通过1路DO通道控制风机的启停。将风机电机主电路上交流接触器的辅助触点作为开关量输入(DI信号),输入DDC监测风机运行状态;主电路上热继电器的辅助触点信号(1路DI信号),作为风机过载停机报警信号。
(2)送风温、湿度监测及控制
在风机出口处设 4 ~ 20 mA 电流输出的温、湿度变送器各一个(TT1、MT1),接至 DDC 的 2路 AI输入通道上,分别对空气的温度和相对湿度进行监测,以便了解机组是否将新风处理到所要求的状态,并以此控制盘管水阀和加湿器调节阀。
(3)过滤器状态显示及报警
风机启动后,过滤网前后建立起一个压差。用微压差开关即可监视新风过滤器两侧压差。如果过滤器干净,压差将小于值;反之如果过滤器太脏,过滤网前后的压差变大,超过值,微压差开关吸合,从而产生“通”的开关信号,通过一个 DI输入通道接入 DDC。
(4)风机转速控制
DDC 通过 1路 AI通道测量送风管内的送风压力,调节风机的转速,以调节送风量,确保送风管内有足够的风压。
(5)风门控制
在冬季停机后为防止盘管冻结,可选择通断式风阀控制器,通过 1路 DO 通道来控制,当输出为高电平时,风阀控制器打开风阀,低电平时关闭风阀。为了解风阀实际的状态,还可以将风阀控制器中的全开限位开关和全关限位开关通过 2个 DI输入通道接入 DDC。
(6)安全和消防控制
只有风机确实启动,风速开关检测到风压后,温度控制程序才会工作。当火灾发生时,由消防联动控制系统发出控制信号,停止风机运行,并通过 1路 DO 通道关闭新风阀。新风阀开 /闭状态通过2路DI送入控制器。
(7)防冻保护控制
在换热器水盘管出口安装水温传感器 TT2,测量出口水温。一方面供控制器用来确定是热水还是冷水,以自动进行工况转换;同时还可以在冬季用来监测热水供应情况,供防冻保护用。水温传感器可使用 4 ~ 20 mA 电流输出的温度变送器,接到 DDC 的 AI通道上。
(8)连锁控制
启动顺序控制:
启动新风机—开启新风机风阀—开启电动调节水阀—开启加湿电动调节阀;
停机顺序控制:
关闭新风机—关闭加湿电动调节阀—关闭电动调节水阀—关闭新风机风阀。
(9)小新风量控制
为了基本的室内空气品质,通常采用测量室内CO2浓度的方法来衡量。从节能角度考虑,室内空气品质的控制一般希望在满足室内空气品质的前提下,将新风量控制在小。
1、中央空调系统哪些部分需要配置自动控制?
答:主要包括两大部分:冷热源主机部分和末端设备部分,需要分别配置自动控制系统。
2、末端设备配置自控系统有什么作用?
答:控制系统的作用无外乎几点:
(1)空调区域的温度、湿度、压力等的控制,对于舒适空调,温湿度过高过低都影响舒适感,只有自控才能将温湿度自动控制在设计值;对于工艺空调,是生产工艺的条件。
(2)设备的保护,自动维护等,例如过滤器的压差报警,提示及时清洗堵塞的过滤网,再如风机和加热器的连锁控制,风机关了,加热器自动关闭,否则可能引起火灾等。
(3)有节能的作用,例如根据负荷变化通过变频调整风机转速就可以降低风机能耗;过渡季节自动开大新风量,就可以节省主机能耗等。
系统方案主要的组成部分为:1、空调自控监控计算机和监控软件平台,这是为监管和维护使用的决策层面的功能需求;2、控制层的DDC空调自控控制器,通过编程设置,使空调自动按设定模式运行;3、传感层的信号接入和自动控制阀,通过对温湿度的采集和回馈,DDC空调控制器通过内置的PID算法,实现对阀门的自动化开闭或流量的控制,达到使温湿度恒定的状态 空气温度控制
一般空气的温度调节有以下几种方式:
(1)夏季制冷
A.采用喷水室喷冷水冷却空气的温度调节
B.采用水冷式冷却器冷却空气的温度调节
(2) 冬季加热
A. 热水加热器的加热量调节
B.蒸汽加热器的加热量调节
各种温度控制方式都有其特点,针对不同项目实际情况,要分析后采用合适的温度控制方案。由于温度控制分为夏季冷却和冬季的加热两种情况,其控制方式也会有所不同。
空气温度控制方案:
在空调系统中,需要送风温度进行控制与调节,送风温度通过温度传感器得到与温度相关的模拟量输入到PLC,这样,PLC对送风温度的控制形成了一个闭环系统,使得控制变得更加。
温度控制有冬夏两种控制模式,夏季采用冷冻水降温、冬季采用蒸汽加热的方式来控制送风温度,两种模式用转换开关来手动控制为1状态,则为夏季控制模式,为0则为冬季控制模式。
温度传感器检测送风管内的送风温度,将检测值送与给定值22℃进行比较,若检测值与给定值相等则冷却水/蒸汽的阀门开度保持不变。若检测值大于给定值,夏季控制模式时加大冷却水的阀门开度,冬季控制模式时减小加热蒸汽的阀门开度,使温度恢复到设定值。若检测值小于给定值,在夏季控制模式时减小冷却水的阀门开度,冬季控制模式时加大加热蒸汽的阀门开度,使温度恢复到设定值。 湿度控制:
在空调节能自控系统中,需要对送度进行控制与调节,送度通过湿度传感器得到与湿度相关的模拟量输入到PLC。这样,PLC对送度的控制形成了一个闭环系统,使得控制变得更加。
送风管内的湿度传感器检测送度,将检测值与给定值进行比较,若检测值与给定值相等,则加湿阀的开度保持不变,若检测值大于给定值,通过PI控制关小加湿阀的开度,若检测值小于给定值,则通过PI运算加大加湿阀的开度,使送度满足要求。湿度控制在85%。
送风压力控制:
在空调节能自控系统中,需要对送风机的转速进行有效控制与调节,从而控制送风压力。送风压力通过压力变送器得到与压力相关的模拟量输入到PLC,PLC通过变频器来控制送风机的转速。这样, PLC对送风压力的控制形成了一个闭环系统,使得控制变得更加。
送风管尾端的压力传感器检测送风压力,将检测值与给定值进行比较,若检测值与给定值相等则保持送风机的转速,若检测值大于给定值则通过变频器减小送风机的转速,若检测值小于给定值则通过变频器加大送风机的转速,从而使送风压力满足系统的要求。
新风回风比例控制:
按下中央空调控制系统的启动按钮和回风机的启动按钮,则中央空调系统就会按照设定的方式自动运行,监测送风机、回风机、过滤网有无故障报警,若有,则停止整个系统,若无则按设定值开启新风回风阀门的开度,调用子程序温湿度控制系统、送风压力控制系统进行温湿度调节和送风压力调节。而一旦按下系统停止按钮,则中央空调系统就会停止工作。
三、洁净间空调自控系统的实现
1、空气净化
一般的洁净间空间系统中,空气化处理采用空气过滤器。通常情况下,安装初效过滤器和中效过滤器后,空气洁净度可以达到10000级。而对于的超净要求的洁净间还应安装过滤器。这样,空气洁净度可以达到更高(如100级甚至更高)。过滤器长期使用时,滤料上沉附的灰尘将慢慢增加,这样会增大气流阻力,影响整个空调系统的运行。因此,工程上应对过滤器的气流阻力变力进行自动检测和报警。通常采用差压法测量过滤器前后的压差Pd,并将此差压信号进行显示和根据设定的差压限值报警,以便及时清理或更换。
2、温度控制
A、一次加热的控制
空气一次加热又称预加热,是用来加热新风或加热新风与一次回风的混合风。一次加热一般只用于冬季很冷的地区,防止新风与一次回风混合后达到饱和,产生水雾或结冰。一次加热还应用于一次混合不允许变动的超净空调系统中。当采用蒸气或热水进行加热时,一般采用控制蒸气或热水的调节阀开度实现温度控制;当采用电加热时,通过晶闸管电力控制器,控制其加热电功率实现温度控制。
B、二次加热与三次加热的控制
空气二次加热通常设在表冷器之后或二次回风混合段后。二次加热的目的是在有相对湿度要求的情况下,为了送风温度或空调室内的温度。其控制方式与一次加热的情况基本相同。三次加热又成精加热,通常是在温度控制时,用于温度微调而设置的加热段。其控制应根据具体情况参照上述原理实施。
3、湿度控制
A、加湿处理及控制
洁净间空调工程中,加湿操作一般是在冬季或过渡季节空气干燥时进行。空气加湿的方法比较多。通常采用蒸汽加湿器和电加湿器的开关控制或功率调节。蒸汽加湿时,根据湿度控制要求,可通过对电磁阀进行位式控制或采用二通调节阀的连续调节来实现。
B、除湿(干燥)处理及控制
空气冷却干燥处理常用表冷器来完成。表冷对空气的处理的等湿冷却二种处理过程。采用表冷器进行湿度控制时,是通过调节表冷器的冷媒(如冷冻水)流量来实现。当湿度要求的值时,可通过加大冷水阀的开度来加大其流量,实现除湿(即干燥)处理;反之减少流量,实现加湿处理。应该说明的是,由于空气的物理性质,其湿度的控制相对比较复杂,方法也较多。而且,空气的温度和湿度二个参数在调节过程中又相互影响。如某些原因使室内温度升高,引起空气中水蒸汽的饱和分压变化,在含湿量不变的情况下,将使相对湿度减少。因此,对其中某一参数进行调节时,也会引起另一参数的变化。例如在夏季采用表冷器进行除湿调节,开大冷水阀时,在使湿度恢复正常的同时,也使温度降低。因此,在工艺设计和自控方案设计时都应充分考虑到这一特点。
4、正压控制
我国国家标准规定,不同级别洁净室之间应大于4.9Pa,洁净区与之间应大于9.8Pa。洁净室内的结构等基本确定,在运行过程中,保持正压可以通过控制新风量或回风量来实现。即通过控制新风门或回风门的开度来实现。
5、其它控制与空调节能
对洁净间而言,除上述必需的技术指标示,还有一些对于安全与节能等方面的要求。结合多年的工程实践,主要有如下一些方面。
洁净间空调自控系统解决方案
一、 规范
1. 1洁净间空调系统相关规范
随着经济的发展和生活水平的提高,目前在电子、制药、食品、生物工程、医疗等领域对洁净间的要求越来越高,洁净技术也随之发展起来。它综合了工艺、建筑、装饰、给排水、空气净化、暖通空调等各方面的技术。按照人民共和准GBJ73-84《洁净厂房设计规范》,其与空调系统相关的主要技术指标为:
1. 空气洁净度:
等级 每M3空气中≥0.5微米尘粒数 每M3空气中≥0.5微米尘粒数
100级 ≤35×100
1000级 ≤35×1000 ≤250
10000级 ≤35×10000 ≤2500
100000级 ≤35×100000 ≤25000
2. 温、湿度:
(1) 满足生产要求;
(2) 生产工艺无温、湿度要求时,洁净室温度为20-26℃,湿度小于70%;
(3) 人员净化用室和生活用室温度为16-28℃。
3. 洁净室正压:
洁净室维持一定的正压。不同等级的洁净室以及洁净区与非洁净区之间的静压差,应不小于4.9Pa,洁净区与室外的静压差,应不于9.8 Pa.。
此外,还有对于风量,风速等的技术要求。总之,洁净间的各项指标都非常严格,因此,对其进行的控制就成为。
1. 2洁净间空调自控的意义
在现代商业及工业楼宇中,空调系统设备较多,自动化管理是使其安全工作并良好运行的重要。同时,空调的能源消耗一般占总能源消耗的40%以上,因此空调节能是节能的重要手段。对洁净间而言,更是如此。采用空调自控产品,会产生下列一系列好处:
先,由于空调系统实现自动化监控,可以使系统能够更安全的运行,并大限度的提高舒适程度。对洁净间来说,更成为生产所的条件。
此外,由于实现了自动化监控,可以在满足系统安全运行及系统的各种技术指标的同时,大限度的实现节能控制,符合日益的节能和环保需要。有关资料表明,采用空调自控系统后,可节约空调系统设备年度运行费用的10%。更乐观的估计认为可达15%-30%。而空调自控产品的投资占整个楼宇或厂房总投资的不到0.5%,收回投资时间短。
同时,由于实现设备的自动控制和管理,可缩减人员维护,节约人员开支,提高综合管理水平,减少突发事故的发生和设备损坏,从而带来潜在效益。
1. 3洁净间空调控制系统功能简价
Excel 20中文版控制器是美国HONEYWELL公司Excel 5000控制器家族中的一员。特别适合应用于洁净间如手术室,洁净厂房的空调控制,依照《洁净室施工验收规范》,《洁净厂房设计规范应》,《采通风与空气调节设计规范》等国家标准,并综合考虑上述各系统的内在,我们以Excel 20为核心构建了较完整的洁净间空调自控系统,它具备以下特点:
1. 恒温恒湿比例积分控制
2. 室内远程启停空调
3. 室内温度设定
4. 关键故障(火灾)报警及联锁
5. 非关键故障(滤网堵塞/送风过热)报警及联锁
6. 夏季防止送风凝露/冬季防冻
7. 开机顺序和联锁等。
8. 自定义启停时间程序等。
下面,对其构成、工作原理等作详细介绍。
二.洁净间空调自控系统构成
2. 1模拟仪表自动控制
由模拟控制器(又称模拟控制仪表)、传感器、执行器与被控对象组成的自控系统见图2-1,这是单回路控制系统框图。由于其理论成熟、结构简单、投资少、易于调整等因素,过去在空调、冷热源及给排水等系统中得到广泛应用。
一般模拟控制器为电气式或电子式,只有硬件部分,无需软件支持。因此,在调整、投运过程中比较简单。其组成一般为单回路控制系统,只能适用于小规模空调系统。从发展趋势来说,己经较少采用,在此不作进一步说明。
2.2计算机控制系统
由于计算机枝术、控制技术、通信技工及图像技术的发展,使微计算机控制技术在制冷空调自动控制的应用愈来愈普遍。传统控制系统在引人微计算机后,就可以充分利用计算机的强大算术运算、逻辑 运算及记忆等功能,运用微机指令系统,编制出符合控制规律的软件。微机执行这些程序,就能实现被控参数的控制与管理,如数据采集和数据处理等。
计算机的控制过程可归纳为实时数据采集、实时决策和实时控制三个步骤。这三个步骤不断地重复进行就会使整个系统按照给定的规律进行控制、调节。同时,也对被控变量及设备运行状态、故障等进行监测、限报警和保护,记录历史数据等。
应该说,计算机控制在控制功能如精度、实时性、可靠性等方面是模拟控制所无法拟控制所*的。更为重要的是,由于计算机的引入而带来的管理功能(如报警管理,历史记录等)的增强更是模拟控制器根本无法实现的。因此,近年来,在制冷空调自动控制的应用上,尤其在大中型空调系统的自动控制中,计算机控制已经占主导地位。
2.2.1直接数字控制
所谓在接数字控制是以微处理机动为基础、不借助模拟仪表而将系统中的传感器或变送器或的输出信号直接输入到微型计算机中,经微型计机按预先编制的程序计算处理直接驱动执行器的控制方式,简称DDC(Direct Digital Control),这种计算机称为直接数字控制器,简称DDC控制器。
DDC控制器中的CPU运行速度很快,并且其配置的输入出端口(I/0)般较多。因此,它可以同时控制多个回路,相当于多个模拟比高等特点。
2.2.2集散型控制系统
集散型控制系统Total Distributed System缩写为TDS。与过去传统的计算机控制方法相比,它的控制功能尽可能分散,管理功能尽可能集中。其基本结构如图2-3。它是由中央站、分站、现场传感器与通信通道连接起来。
分站就是上述以微处理为核心的DDC控制器。它分散于整个系统各被控设备的现场,与现场的传感器及执行器等直接连接,实现对现场设备的检测与控制。中央站实现集中监控和管理功能,如集中监视、集中启停控制、集中参数修改、报警及记录处理等。可以年看出,集散型控制系统的集中管理功能由中央站完成,而控制与调节功能由分站即DDC控制器完成。
二、 洁净间空调自控系统的实现
3. 1空气净化
一般的洁净间空间系统中,空气化处理采用空气过滤器。通常情况下,安装初效过滤器和中效过滤器后,空气洁净度可以达到10000级。而对于的净要求的洁净间还应安装过滤器。这样,空气洁净度可以达到更高(如100级甚至更高)。
过滤器使用时,滤料上沉附的灰尘将慢慢增加,这样会增大气流阻力,影响整个空调系统的运行。因此,工程上应对过滤器的气流阻力变力进行自动检测和报警。通常采用差压法测量过滤器前后的压差Pd,并将此差压信号进行显示和根据设定的差压限值报警,以便及时清理或更换。
4. 2温度控制
3.2.1一次加热的控制
空气一次加热又称预加热,是用来加热新风或加热新风与一次回风的混合风。一次加热一般只用于冬季很冷的地区,防止新风与一次回风混合后达到饱和,产生水雾或结冰。一次加热还应用于一次混合不允许变动的净空调系统中。
当采用蒸气或热水进行加热时,一般采用控制蒸气或热水的调节阀开度实现温度控制;当采用电加热时,通过晶闸管电力控制器,控制其加热电功率实现温度控制。其原理如图3-2所示。
3.2.2二次加热与三次加热的控制
空气二次加热通常设在表冷器之后或二次回风混合段后。二次加热的目的是在有相对湿度要求的情况下,为了送风温度或空调室内的温度。其控制方式与一次加热的情况基本相同。
三次加热又成精加热,通常是在温度控制时,用于温度微调而设置的加热段。其控制应根据具体情况参照上述原理实施。
3.3湿度控制
3.3.1加湿处理及控制
洁净间空调工程中,加湿操作一般是在冬季或过渡季节空气干燥时进行。空气加湿的方法比较多。通常采用蒸汽加湿器和电加湿器的开关控制或功率调节。蒸汽加湿时,根据湿度控制要求,可通过对电磁阀进行位式控制或采用二通调节阀的连续调节来实现。
3.3.2除湿(干燥)处理及控制
空气冷却干燥处理常用表冷器来完成。表冷对空气的处理的等湿冷却二种处理过程。采用表冷器进行湿度控制时,是通过调节表冷器的冷媒(如冷冻水)流量来实现。当湿度要求的值时,可通过加大冷水阀的开度来加大其流量,实现除湿(即干燥)处理;反之减少流量,实现加湿处理。
应该说明的是,由于空气的物理性质,其湿度的控制相对比较复杂,方法也较多。而且,空气的温度和湿度二个参数在调节过程中又相互影响。如某些原因使室内温度升高,引起空气中水蒸汽的饱和分压变化,在含湿量不变的情况下,将使相对湿度减少。因此,对其中某一参数进行调节时,也会引起另一参数的变化。例如在夏季采用表冷器进行除湿调节,开大冷水阀时,在使湿度恢复正常的同时,也使温度降低。因此,在工艺设计和自控方案设计时都应充分考虑到这一特点。
3.4正压控制
我国国家标准规定,不同洁净室之间应大于4.9Pa,洁净区与之间应大于9.8 Pa。洁净室内的结构等基本确定,在运行过程中,保持正压可以通过控制新风量或回风量来实现。即通过控制新风门或回风门的开度来实现。
3.5其它控制与空调节能
对洁净间而言,除上述必需的技术指标示,还有一些对于安全与节能等方面的要求。结合多年的工程实践,主要有如下一些方面。
3.5.1风机故障报警
通过检测风机的风流状态判断风机是否正常工作。若因电机烧毁或皮带松动等原因导致风机停转,应立即报警?lt;BR>3.5.2风机变频控制
为保持洁净间内稳定的正压或一定的新风/回风比,可以对机(电机)转数实施变频控制。实践证明,变频控制比单纯的风门开度调节控制效果更佳,而且可大幅度节约电力消耗。因为在空调系统中,新风/回的输送占电能消耗的大比例。而风门控制实际上是通过节流装置(即风门)来实现气流的改变。
3.5.3水泵变频控制
在一泵对一调节系统时,采用变频调速(水泵转数)实现流量控制比采用节流装置(即调节阀)为佳。这种方式不仅体现在控制效果更佳,同时体现在大幅度节约电力消耗上。
3.5.4节能程序
由于计算机控制系统的应用,使节能控制成为现实。即除了上述对空调系统工艺特点实施的节能控制手段外,计算机控制还可实现如焓差控制、夜晚循环、夜风净化、启停、零能量区等。当然,对于某个特定的洁净厂房,其节能程序应根据其具体情况进行编制,以达到的节能效果。
四、 空调控制系统的设备配置
实现空调自动控制系统的设备有控制器、传感器及执行器等。如前的主流控制系统己以从模拟控制转变为计算机控制,在此,主要对实现直接数字控制既DDC控制的设备作简单介绍。
4. 1DDC控制器
电源:24;耗电:45防护标准:后备电池:3V锂电池;液晶显示:4行×16安符
EPROM中驻有标准程序;Excel能型DDC控制器,是中国国家标准规定的DCP智能型分站。每台控制器之编程均贮存在自己的记忆体内。Excel 20含有16位微处理器i80186可控制16个物理点,(即可联接16个探测器,开关,执行器)。
它由基本的CPU模块及电源模块作为基础,再任意按照实际需要由软件置以下功能模块:
类比输和入模块(AL):7个点,0~1VDC,2~10VDC,420MA;
类比输出模块(AO):3个点,210VDC;
数字输入模块(DI):2点,干接点;
数字输出模块(DI):4个继电器输出
开关量的启/停可以通过时间计划表来控制其何时启停。弹性时间计划长可达1年.
4.2温度传感器
室内温度传器T7412,设可调,有效温度范围:-20℃到50℃,大传输距离:200米;,NTC20K。环境要求:--35℃到60℃,5%RH到95%RH,电气接线:2X 1.5MM2,应与线电源屏蔽,室外温度传感器C703F,有效温度范围:-20℃到50℃;大传输距离:200米,NTC20K,环境要求:-35℃到60℃,5%RH到95%RH,电气接线:2×1.5MM2,应与线电源屏蔽,风道式温度传感器C7031C,有效温度范围:-20℃-50℃,大传输距离:200米
4.4冷热水阀及驱动器,比例积分电动阀
其中包括:阀门V5011,等百分比特性,电动阀门执行器ML7984或M7421,选配不同阀体,适用于冷冻水,热水介质,DN25-150各格供选择
4.5蒸汽加热/加湿阀及驱动器
阀门V5011,线性特性,电动阀门执行器M7421,选配不同阀体,适用于蒸汽介质,DN25-150各规格供选择
全国空调自控系统热销信息