关键词 |
梁平钴酸锂回收,钴酸锂回收,朝阳钴酸锂回收,苗栗县钴酸锂回收 |
面向地区 |
全国 |
锂电池是一种将电化学能与电能互相转换的电化学储能器件,通过锂离子与电子在电极材料中的注入与脱出实现能量的传递与互换。
伴随着锂离子与电子的传递,电池内部材料本征的物理化学参数如吉布斯自由能、费米面等会随之改变,反而在宏观电池参数上就是电池电压的变化以及电池容量的变化
随着3C产品更新换代越发频繁,3C产品“轻薄化、化”是一个发展趋势,这对锂离子电池能量密度提出更高要求。
目前主要通过提高截止电压来提高钴酸锂电池的能量密度。
提高充电电压,更多的锂离子从晶格中脱出,会引起结构的不稳定;
材料表层脱锂程度变高,结构相变从材料表面扩展到颗粒内部;
态钴不稳定,具有强氧化性,易与电解液反应;
钴的溶解伴随着氧的脱出及产气的发生,这些因素都会造成循环寿命缩短,安全性降低,影响高电压钴酸锂的实际应用。
为此,研究者提出许多方法进行改进,主流的方法是掺杂、包覆、电解液的优化、功能隔膜的使用。
掺杂是通过引入其他元素,掺入材料晶格中,优化体相结构,抑制充放电过程中相变,从而起到改善循环的作用;
包覆是在表层或浅层引入其他元素,优化表面界面结构,抑制表面界面副反应,从而起到改善循环的作用;
电解液优化及功能隔膜使用,提高电解液及隔膜的抗氧化能力,抑制锂枝晶生长,提高安全性能,从而改善循环作用。
近年来,研究者们同时进行基于高压钴酸锂表面掺杂、包覆、电解液优化及功能隔膜的使用来解决问题,高压钴酸锂的容量及循环得到改善,截止电压得到逐步提高。
钴酸锂具有岩盐相、尖晶石结构相及层状结构相三种不同类型的物相结构。
相层状结构具有好的电化学性能,层状结构钴酸锂为六方晶系α-NaFeO2构造类型,空间群为R-3m,Co原子与近的O原子以共价键的形式形成CoO6八面体,其中二维Co-O层是CoO6八面体之间以共用侧棱的方式排列而成,
Li与近的O原子以离子键结合成LiO6八面体,Li离子与Co离子交替排布在氧负离子构成的骨架中,充放电过程中CoO2层之间伴随着Li离子的脱离和嵌入,钴酸锂仍能保持原来的层状结构稳定而不发生坍塌,是钴酸锂得到广泛应有的关键。
由于正极材料本身的局限性,高电压下过量脱锂导致层状结构不稳定,产生体相结构变化,伴随着相变和体积变化,
使得晶胞参数变化、晶界错位、应力变化、颗粒开裂,导致容量快速衰减;体相结构体积变化影响到表面结构变化,使得表面易产生裂纹,导致表面热稳定性减弱、金属溶解、析氧等;
表面结构的变化伴随着界面副反应及氧的转移,使得电解液氧化、内阻增加、产气、热稳定及安全性能下降等,导致一系列宏观电池失效行为。
在高电压下相变的可逆程度是决定钴酸锂应用的关键,而期望用单一的方法解决高压钴酸锂的问题是不现实的。
结合有效掺杂、共包覆、高压电解液及新功能隔膜配套使用来缓解钴酸锂电池内部失效,从而改善高压钴酸锂[3]。
采用钛、镁、铝痕量元素共掺杂,采用同步辐射X射线三维成像技术揭示镁和铝元素更容易掺杂进入材料晶体结构中抑制4.5V左右相变;
钛元素则倾向于界面和表面富集,提高倍率性能和降低表面氧活性;钛、镁、铝痕量元素共掺杂在高电压下具有的效率,倍率性能及循环性能。
ZhangJie Nan等从晶体结构、电子结构和材料亚微米尺度微观结构等不同维度对材料进行综合求证,为设计高电压、高容量正极材料提供了理论依据。多种元素共掺杂越发成为高压钴酸锂掺杂改性的一个发展方向。
图5为同步辐射X射线三维成像技术揭示铝(a、d),钴(b、e)及钛(c、f)元素在LiCoO2颗粒中的空间分布;
(g)为可视化子域;
(h)为子域和整个粒子作为一个整体的体积和表面积的量化;
(i)为所有子域的体积分布。
随着对高压钴酸锂正极材料结构研究的不断深入和制备工艺的不断优化,人们发现,高压钴酸锂需要从材料的晶胞结构、一次品晶体结构、成品颗粒结构、材料表界面化学以及材料大规模生产工艺技术过程进行优化,才可以使得高压钴酸锂材料表现出更为的综合性能。
(1)晶胞结构:主要通过掺杂或共掺杂而实现调控,达到优化材料的能级结构/离子传输通道的目的,从而提升材料电子电导率/离子电导率或者结构稳定性,进而提升材料的倍率性能和高压循环性能等;
(2)一次颗粒的晶体形貌:通过控制合成条件改变晶体的优势生长方向、晶粒大小、晶粒堆积方式。这一层面的优化可以优化电化学活性/惰性界面的面积、应力释放路径、锂离子扩散路径,从而提升电池的倍率性能、循环稳定性和能量密度等