关键词 |
三元正极材料/镍钴锰酸锂 |
面向地区 |
全国 |
三元材料由于具有高电压窗口,受到了越来越多的关注与研究。然而,由于目前商业用的碳酸酯基电解液电化学稳定窗口低,高压正极材料至今仍未产业化。
当电池电压达到4.5 (vs.Li/Li+)左右时电解液便开始发生剧烈的氧化分解,导致电池的嵌脱锂反应无法正常进行。通过开发和应用新型的高压电解液体系或者高压成膜添加剂来提高电极/电解液界面的稳定性是研发高电压型电解液的有效途径
发现使用OA和PVP作为表面活性剂能制备出形貌的正六边形纳米片状正极材料前驱体,且所得纳米片的粒度分布较均匀,尺寸为 400nm 左右,表面活性剂对前驱体有很好的控形作用,组装的电池在 1C 的放电倍率下的放电比容量为 157.093 m Ah·g-1,在 1C、2C、5C 和 10C 的放电倍率下各循环 50 次后容量保持率大于 92%,体现出良好的电化学性能。
制备三元正极材料的主要方法中,固相法、共沉淀法和溶胶凝胶法都需要通过高温烧结数小时,耗能大,制备工艺复杂。微波加热是在电磁场中材料产生介质损耗而引起的体加热,加热速度快且均匀,合成的材料往往也具有更的结构和性能,是一种非常有潜力的合成正极材料的方式。
苏玉长等人将锂源与计量比的前驱体混合后置于微波炉中,抽真空并通入氧气,通过控制微波功率以实现不同速率的升温,加热到750℃后烧结20 min,自然冷却至室温得到正极材料。
利用XRD、SEM和充放电等手段,对合成材料的结构、微观形貌和电化学性能进行了表征。实验结果表明,在1300 W 的输出功率的微波中合成的正极材料,在0.2C充放电条件下,放电比容量高达185.2m Ah / g,库伦效率为84%,循环30次后保持92.3%的容量(2.8~4.3 V),表现出了良好的电化学性能和应用潜力
锂离子电池的正极材料成本占30%-40%,因此,可以通过回收废旧电池正极材料,利用制备工艺回复正极材料的储能性能,能够很大程度上降低锂离子电池成本,而且一个完整的锂离子电池产业链就应该包括锂离子电池的回收利用。
将对锂电产业新政策进行全面的解读,以“动力电池材料的新发展”方向为切入点,探讨动力电池材料新发展技术、锂电池制造工艺、锂电池性能检测、降本方案等几个角度内容展开交流,共同探讨如何提高动力电池性能及对新能源汽车、储能、手机产业等下游应用的影响