关键词 |
南开钴酸锂回收,钴酸锂回收信誉,朝阳钴酸锂回收,钴酸锂回收信誉 |
面向地区 |
全国 |
在钴酸锂电极材料的探索中,高电压钴酸锂的探索一直是萦绕在研究人员心中。在早期的钴酸锂探索中,当电压4.25V时,电池的循环性能出现了快速的衰减,此时钴酸锂材料六方晶相开始向单斜相转变。
相关研究表明单斜相变与电池性能衰减之间的关系如下:相变过程中材料体积变化导致材料性能变化;相变不可逆造成容量衰减与结构破坏;
表面副反应进一步加剧;过渡金属溶解加速Li源消耗;氧参与电荷转移进一步氧化电解液。
随着对材料改性技术的运用,相关高电压钴酸锂材料取得了长足的进步,然而关于高电压钴酸锂材料的研究依然爱不得不面对如下几个问题
钴酸锂具有岩盐相、尖晶石结构相及层状结构相三种不同类型的物相结构。
相层状结构具有好的电化学性能,层状结构钴酸锂为六方晶系α-NaFeO2构造类型,空间群为R-3m,Co原子与近的O原子以共价键的形式形成CoO6八面体,其中二维Co-O层是CoO6八面体之间以共用侧棱的方式排列而成,
Li与近的O原子以离子键结合成LiO6八面体,Li离子与Co离子交替排布在氧负离子构成的骨架中,充放电过程中CoO2层之间伴随着Li离子的脱离和嵌入,钴酸锂仍能保持原来的层状结构稳定而不发生坍塌,是钴酸锂得到广泛应有的关键。
钴酸锂充放电过程伴随着锂离子的脱出和嵌入,空间结构逐步发生变化。
当0.93≤x≤1,LixCoO2属于六方晶系(H-1相);0.75≤x<0.93时,六方晶系H-1相逐渐转变成六方晶系H-2相,两相比例随x的变化而变化;
0.5≤x<0.75时,LixCoO2属于六方晶系(H-2相);单相H-1和H-2都属于R-3m空间群,具有相同的对称性,但两相晶胞参数上有所不同,单相H-1通常偏向半导体电导特性,单相H-2通常偏向金属电导特性[2];
0.45≤x<0.5时,充电电压在4.2V左右,LixCoO2由六方晶系H-2转变为单斜晶系M,属于P12/m1空间群,
这一过程伴随着晶胞参数不规则变化,
导致这一现象的原因可能是锂离子和锂空位空间规律发生变化,
呈现出有序-无序-有序的变化规律,晶体参数的变化导致材料颗粒体积的变化,
LixCoO2由六方晶系H-2转变为单斜晶系M,材料晶胞沿c轴膨胀了2.3%[3];
0.28≤x<0.45时,单斜晶系M向第二个六方晶系O3转变,此相变的发生为后续高电压钴酸锂开发起到引导作用;
当x趋向于0时,第二个六方晶系O3逐渐转变为第二个单斜晶系O1转变,两相转变在4.5V附近,该相变沿c轴发生剧烈变化,膨胀了2.6%[3]
由于正极材料本身的局限性,高电压下过量脱锂导致层状结构不稳定,产生体相结构变化,伴随着相变和体积变化,
使得晶胞参数变化、晶界错位、应力变化、颗粒开裂,导致容量快速衰减;体相结构体积变化影响到表面结构变化,使得表面易产生裂纹,导致表面热稳定性减弱、金属溶解、析氧等;
表面结构的变化伴随着界面副反应及氧的转移,使得电解液氧化、内阻增加、产气、热稳定及安全性能下降等,导致一系列宏观电池失效行为。
在高电压下相变的可逆程度是决定钴酸锂应用的关键,而期望用单一的方法解决高压钴酸锂的问题是不现实的。
结合有效掺杂、共包覆、高压电解液及新功能隔膜配套使用来缓解钴酸锂电池内部失效,从而改善高压钴酸锂[3]。
体相掺杂能够稳定材料结构,抑制不可逆相变,提高材料循环性能。
体相掺杂包含:
(1)阳离子掺杂:阳离子通常指价态不正三价的离子,主要有锂空位、锂离子、镁离子、铝离子、锆离子等。
A.R.West等[8]将镁离子引入到钴酸锂中,认为镁离子掺杂更倾向于钴的位置,使得钴的价态提高,产生一种导入型P型半导体掺杂,同时产生部分锂空位,能够在一定程度上提高电子电导,其研究成果对后续镁离子掺杂起到引导作用。
Delmas等[9]认为只有镁掺杂达到一定的量才能形成连续通道,表现出金属特性区域,才会反应出电子电导提升的现象。
目前,二价镁离子是工业生产成功掺杂元素之一。
三价元素掺杂,主要分为无化学活性的硼、铝、铱,有化学活性的锰、镍、铬等元素。
G.Cede r等[10]通过理论计算预测及实验证明铝离子能够有效提高钴酸锂在高压下的循环性能及降低成本
由于3C及其他领域对电池的能量密度要求越来越高,快速充电越发流行,钴酸锂必然朝着更高电压、更大倍率方向发展。高压钴酸锂的难点主要集中在以下几个方面:
(1)体相结构的控制:在高电压下,层状结构钴酸锂由于过度脱锂,结构发生剧烈变化,伴随着相变及应力的产生,过度的应力会使颗粒开裂,破坏体相结构,使得循环性能变差。可以通过微量元素共掺杂来抵消应力,以达到抑制材料开裂的目的;
(2)表面界面结构的控制:主要通过引入新的表面包覆优化表面结构,抑制过渡金属溶解,抑制表面重构,从而达到提的目的;
(3)抑制表层氧的活性:氧的溢出伴随着过渡金属溶解及产气的发生。通过表层处理及高压电解液的配套使用,降低材料表面气体溢出,从而达到提高高温稳定性及循环性能的目的
全国钴酸锂回收热销信息