关键词 |
从事分子筛回收,眉山分子筛回收,宏隆分子筛回收,从事分子筛回收 |
面向地区 |
全国 |
双相转变机理
在人们对于沸石分子筛晶化究竟是通过液相转变机理还是通过固相转变机理争执不清时,八十年代之后,又有科学家提出了双相转变的机理。双向转变机理认为液相转变和固相转变同时存在沸石分子筛晶化过程中,既可以分别发生在两种晶化反应体系中,也可以同时发生在一个体系中。
Gabelica等人从对ZSM-5分子筛以及Na Y沸石晶化的研究印证了双相转变机理的存在性。Iton等人在ZSM-5分子筛的晶化过程中应用小角中子散射技术进行研究,同时发现使用不同的硅源,ZSM-5沸石分子筛的晶化是遵循不同的机理进行。从而得出即使是同一种类型沸石分子筛,在不同的晶化条件下其生长的机理是不一样的结论。
水热合成法是在沸石分子筛合成中常用和有效的途径,深入研究分子筛水热合成的主要困难是对分子筛的生成机理了解的还不够清楚。但是,对于沸石分子筛的合成来说无论哪种生成机理,其晶化过程都要经历相同的基本步骤:多硅酸盐与铝酸盐的再聚合、分子筛成核、核生长、分子筛晶体的生长以及引起的二次成核。为了很好的控制和调变沸石分子筛的合成反应,重要的是研究反应的条件对合成反应的影响。根据多年的实践经验,下列影响因素在沸石分子筛的合成中占有很重要的地位,主要包括:反应物的组成、硅铝比、碱度、陈化、晶化温度与时间等等。研究这些因素对于合成沸石具有很重要的意义。
合成沸石分子筛的基本原料有:硅源、铝源、碱源、金属阳离子、其它矿化剂、模板剂和水等。常用的硅源有白炭黑、硅溶胶、固体硅胶、有机硅酸酯、水玻璃等。常用的铝源有偏铝酸钠、硫酸铝、薄水铝石、金属铝、硝酸铝、异丙醇铝、氢氧化铝等。碱源有氢氧化钠,氢氧化钾等。金属阳离子包括碱金属阳离子和碱土金属离子如:Li+、Na+、K+、Ca2+、Ba2+等。分子筛合成的矿化剂有两种:氢氧根离子和氟离子。模板剂有各种含氮的有机物、季磷盐等。
初始凝胶的配比往往能够决定终产物的类型。初投料的反应物的不同会导致后的生成物的完全不同,如,阳离子不同可以导致分子筛产物的不同,钠离子容易导向LTA、CAN、FAU、GIS等分子筛骨架的生成;而钾离子则容易导向LTL、CHA、ERI等类型的分子筛骨架。即使初的反应物相同只是反应物含量有微少的差别也极有可能得到不同的物相,如碱度对分子筛合成体系的影响。另外当所有物料比例都相同,只是简单的使用不同的硅源也有可能导致分子筛晶体大小、形貌、甚至骨架类型的改变。当我们用相图来表述整个物料时,从中可以发现许多结构只能在一个特定的区域里得到。有时由于过于多的影响因素,只能选择一两个变量来作图。另外,投料时的加料顺序,人为操作对于分子筛的合成也是一个影响因素。
从原料的均匀混合到升温晶化前的静止过程,这一个阶段被叫做陈化。在陈化过程中,凝胶的组成、结构都是会发生变化的,陈化过程有时甚至是缓慢的成核过程,导致分子筛生长周期的缩短。为典型的例子是在合成FAU分子筛时使用的Y导向剂就需要所有反应物混合均匀后室温陈化,这是因为导向剂经过陈化产生了微小的沸石晶核,并且含有大量的六元环。
对于合成沸石分子筛,温度是一个很重要的因素。温度变化会影响水在反应釜中的压力的变化、硅铝酸盐的聚合状态和聚合反应、凝胶的生成和溶解与转变、分子筛的成核与生长以及介稳相间的转晶。相同的体系在不同的温度下可能会得到完全不一样的物相,温度越高得到的沸石的尺寸和孔体积越小,晶体骨架密度相应增大。一般而言在150 °C以下,初级结构往往是四元环或六元环,而当温度150 °C,则往往是五元环的初级结构单元。由此可见,在高温水热条件下,无机物(主要是硅铝酸盐物种)的造孔规律和晶化温度与水蒸汽压之间存在着密切的联系。
晶化时间往往也是分子筛合成的一个重要因素。晶化时间不够常常会有大量的原料未转化,时间过长,往往会发生晶体转晶的现象,一般由比较空旷的结构转化为比较致密的结构。晶化时间与晶化温度往往是相辅相成的,降低温度,就要增加晶化时间;升高温度,有时就要缩短晶化时间。