关键词 |
湘潭回收中药提取设备,万盛回收中药提取设备,二手实验室提取设备,回收中药提取机组 |
面向地区 |
全国 |
超临界流体萃取
超临界流体萃取SFE是利用超临界状态下的流体为萃取剂,从液体或固体中萃取中药材中的药效成分并进行分离的方法。该技术是80年代引入中国。其原理是以一种超临界流体在临界温度和压力下,从目标物中萃取有效成分,当恢复到常压常温时,溶解在流体中成分立即以溶于吸收液的液体状态与气态流体分开。萃取过程一般分为流体压缩→萃取→ 减压→分离四个阶段。
中药絮凝分离技术
中药絮凝分离技术是将絮凝剂加到中药的水提液中通过絮凝剂的吸附、架桥、絮凝作用以及无机盐电解质微粒和表面电荷产生凝聚作用,使许多不稳定的微粒如蛋白质、锰液质、树胶、鞍质等连接成絮团沉降,经滤过达到分离纯化的目的。使用絮凝剂能在较大程度上保留有效成分,安全,操作简便。絮凝剂有鞣酸、明胶、蛋清、101果汁澄清剂、ZTC澄清剂、壳聚糖等,但应用广泛的是壳聚糖澄清剂。
超微粉碎技术
根据粉碎加工技术的深度和粉体物料物理化学性质及应用性能的变化,一般将细粉体和微细粉体分为10—1000μm(细粉),0.1—10μm(超细粉)和0.001—0.1μm的细粉一般采用传统的粉碎或磨粉设备及相应的分级设备等进行加工,这种加工技术称为磨粉;小于0.1μm的超微细粉目前还难以完全用机械粉碎的方法加工,需要采用其他物理,化学,方法进行加工;一般将加工0.1—10μ的超细粉体和相应的分级技术称为超细粉碎。
中药提取物是融合现代制药新技术的新型中药产品,它是通过对净药材或炮制品经浸出、澄清、过滤、蒸发等方法提取、纯化而制成的供中成药生产的原料产品,具有广阔的市场空间,在药品、食品、保健品、化妆品等诸多领域都被广泛应用,因而带动了一大批相关产业。
主要用于化工、制药、石油、染料、生化、食品等工业生产过程中的化学反应和物料分离、加热冷却,液体萃取,气体吸收等化学、物理变化过程。
对于液体混合物的分离设备,除可采用蒸馏的方法外,还可采用萃取的方法,即在液体混合物(原料液)中加入一个与其基本不相混溶的液体作为溶剂,造成第二相,利用原料液中各组分在两个液相中的溶解度不同而使原料液混合物得以分离。液-液萃取,亦称溶剂萃取,简称萃取或抽提。选用的溶剂称为萃取剂,以S表示;原料液中易溶于S的组分,称为溶质,以A表示;难溶于S的组分称为原溶剂(或稀释剂),以B表示。如果萃取过程中,萃取剂与原料液中的有关组分不发生化学反应,则称之为物理萃取,反之则称之为化学萃取。
该逆流提取:由投料斗、旋转式提取筒、出渣螺旋输送器等组成。原料经粗粉碎、浸润后从投料斗投入,提取筒旋转,同时固定在提取筒内壁上的螺旋带将物料从机组前端向后缓慢推进,同时提取溶剂从机组末端的进液管进入提取筒内,由筒后端穿过移动的物料向前端流动,固液两相物质在这种逆向运动中充分接触,从而将药材中有效成分提取出来。药渣经出渣螺旋输送器强制推动至出渣口而排出,出渣螺旋同时对药渣进行挤压,将药渣申残留药液挤出药材组织,减少药渣申残留药液含量。
萃取设备又称 萃取器,一类用于萃取操作的传质设备,能够使萃取剂与料液良好接触,实现料液所含组分的完善分离,有分级接触和微分接触两类。在萃取设备中,通常是一相呈液滴状态分散于另一相中,很少用液膜状态分散的。
2萃取设备类型编辑
萃取设备类型很多,按设备结构分为三类:
混合澄清器 由混合室和澄清室两部分组成,属于分级接触传质设备。混合室中装有搅拌器,用以促进液滴破碎和均匀混合。有些搅拌器能从其下方抽汲重相,借此重相在级间流转。澄清室是水平截面积较大的空室,有时装有导板和丝网,用以加速液滴的凝聚分层。根据分离要求,混合澄清器可以单级使用,也可以组成级联。当级联逆流操作时,料液和萃取剂分别加到级联两端的级中,萃余液和萃取液则在相反位置的级中导出。混合室的工作容积可从料液和萃取剂的总流量乘以萃取过程所需时间算出。澄清室的水平截面积,可从分散相液体的流量除以液滴的凝聚分层速度算出。这些操作参数须经实验测定。一般认为单位体积混合室消耗相同的搅拌功率时,级效大致相等。因此,在放大设计时,可按实测的萃取时间与分层速度设计生产设备。混合澄清器结构简单,级,放大效应小,能够适应各种生产规模,但投资和运转费用较大。
③振动板塔
将筛板连成串,由装于塔顶上方的机械装置带动,在垂直方向作往复运动,借此搅动液流,起着类似于脉动塔中的搅拌作用。
萃取塔设计主要是确定塔的直径和工作段高度。先从液体流量除以操作速度,得出塔截面,算出塔径。然后根据塔的特性以及物系性质和分离要求,确定传质单元高度和传质单元数,后两者相乘即得塔的工作段高度。也有按当量高度与理论级数计算工作段高度的。
超声波是指频率为20千赫~50兆赫左右的机械波,需要能量载体—介质—来进行传播。超声波在传递过程中存在着的正负压强交变周期,在正相位时,对介质分子产生挤压,增加介质原来的密度;负相位时,介质分子稀疏、离散,介质密度减小。也就是说,超声波并不能使样品内的分子产生极化,而是在溶剂和样品之间产生声波空化作用,导致溶液内气泡的形成、增长和爆破压缩,从而使固体样品分散,增大样品与萃取溶剂之间的接触面积,提高目标物从固相转移到液相的传质速率。